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Comments are especially requested on the completeness and clarity of the report, and: 

• The current approaches outlined in the report and in the graphic highlighting key concepts. 

• All “Additional Issues for Consideration” sections and whether they sufficiently address both technical and 
socio-technical concerns, and whether such issues and concerns are appropriate for future science-backed 
standards and technique development. 

• Whether the report in its entirety, presents coverage of the digital content transparency technical 
landscape.  

• Current state of the art for provenance data tracking techniques which may not be already addressed in the 
report, including watermarking techniques, as well as use cases for implementation. 

• Testing, evaluation, and auditing techniques discussed in the report and technical literature references to 
expand on the techniques that are discussed.  

• Technical mitigations for preventing and reducing harms from synthetic child sexual abuse material (CSAM) 
and Non-Consensual Intimate Images (NCII) beyond what is included in the report, as well as further 
evaluations and studies done on the efficacy of these various mitigations, including their application in open 
versus closed models. 

• Potential development of standards and techniques on digital content transparency approaches. 

Comments on NIST AI 100-4 may be sent electronically to NIST-AI-100-4@nist.gov with “NIST AI 100-
4, Reducing Risks Posed by Synthetic Content: An Overview of Technical Approaches to Digital Content 
Transparency” in the subject line. Comments may also be submitted via www.regulations.gov: enter 
NIST-2024-0001 in the search field, click on the “Comment Now!” icon, complete the required fields, 
including “NIST AI 100-4, Reducing Risks Posed by Synthetic Content: An Overview of Technical 
Approaches to Digital Content Transparency” in the subject field, and enter or attach your 
comments.   Comments containing information in response to this notice must be received on or 
before June 2, 2024, at 11:59 PM Eastern Time. 

Acknowledgments: This report could not have been accomplished without the many helpful comments 2 
and contributions from the community and NIST staff and guest researchers: Bilva Chandra, George 3 
Awad, Yooyoung Lee, Peter Fontana, Razvan Amironesei, Mark Przybocki, Kamie Roberts, Elham Tabassi, 4 
Mat Heyman, and Jesse Dunietz. 5 

Disclaimer: Certain commercial entities, equipment, or materials may be identified in this document in order to 6 
describe an experimental procedure or concept adequately. Such identification is not intended to imply 7 
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to 8 
imply that the entities, materials, or equipment are necessarily the best available for the purpose. Any mention in 9 
the text of commercial, non-profit, academic partners, or their products, or references is for information only; it is 10 
not intended to imply endorsement or recommendation by any U.S. Government agency. 11 
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1. Summary 1 

Generative artificial intelligence (AI) technologies can generate realistic images, text, audio, video, as 2 
well as multimodal content. This enables novel applications with promising potential for good while also 3 
posing new risks to trust, safety, transparency, and credibility in digital information and 4 
communications.  5 

This report examines the existing standards, tools, methods, and practices, as well as the potential 6 
development of further science-backed standards and techniques, for: authenticating content and 7 
tracking its provenance; labeling synthetic content, such as using watermarking; detecting synthetic 8 
content; preventing generative AI (GAI) from producing child sexual abuse material or producing non-9 
consensual intimate imagery of real individuals (to include intimate digital depictions of the body or 10 
body parts of an identifiable individual); testing software used for the above purposes; and auditing and 11 
maintaining synthetic content.  12 

This report reflects public feedback and consultations with diverse stakeholders, including those who 13 
responded to a NIST Request for Information.  14 

Digital content transparency, refers to the process of documenting and accessing information about the 15 
origin and history of digital content. Together, the approaches we discuss below can help manage and 16 
reduce risks related to synthetic content in four ways:  17 

• Attesting that a particular system produced a piece of content, 18 

• Asserting ownership of content, 19 

• Providing tools to label and identify AI-generated content, and  20 

• Mitigating the production and dissemination of AI generated child sexual abuse material and 21 
non-consensual intimate imagery of real individuals.  22 

Digital content transparency provides a vehicle for individuals and organizations to access more 23 
information about the origin and history of content, which may contribute to trustworthiness, but does 24 
not guarantee it, and in some cases may actually undermine it. While transparency can help identify 25 
when content is being misrepresented, it can also create a false sense of trust, such as when a piece of 26 
content appears legitimate based on technical measures but is then manipulated through non-technical 27 
means (e.g., taking a legitimate piece of content out of context). Ultimately, the impact of transparency 28 
depends on the effectiveness of the technical methods used and on how people access and interact with 29 
digital content. With respect to the latter, digital information literacy as well as both formal and informal 30 
education can impact how individuals perceive content.  31 

In this document, “synthetic content” refers to “information, such as images, videos, audio clips, and 32 
text, that has been significantly altered or generated by algorithms, including by AI.”  33 

This report provides an overview of technical approaches for provenance data tracking and synthetic 34 
content detection with issues for consideration, along with a review of the current testing and 35 
evaluation for digital content transparency techniques.  36 

For selected techniques, the document identifies ongoing research and related research gaps. It also 37 
discusses technical mitigations for preventing and reducing the production and distribution of synthetic 38 
child sexual abuse material (CSAM) and non-consensual intimate images (NCII) and applies the concepts 39 

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.nist.gov/artificial-intelligence/request-information-nists-assignments-under-executive-order-14110-safe
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
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discussed to the AI lifecycle as outlined in the NIST AI Risk Management Framework, or AI RMF (NIST AI 1 
100-1).  2 

The technical approaches described in this report provide building blocks that can be used to improve 3 
trust in digital content and the institutions and individuals who produce and disseminate it by indicating 4 
where AI techniques have been used to generate or modify digital content. None of these techniques 5 
offer comprehensive solutions on their own; and the value of any given technique is use-case and 6 
context specific and relies on effective implementation and oversight. Because this report focuses on 7 
technical approaches there may be normative, educational, regulatory, and market-based approaches 8 
not described in this report.  9 

Science-backed standards forged through global actions, via international standards-setting bodies, 10 
several of which are mentioned in this report, can promote the adoption and interoperability necessary 11 
for these tools to have the desired impact. 12 

There is no perfect solution to solve the issue of public trust and harms stemming from digital content, 13 
but additional, and improved approaches to synthetic content provenance, detection, labeling, and 14 
authentication techniques and processes are important capabilities to support trust between content 15 
producers, distributors, and the public.  16 

https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
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2. Harms and Risks from Synthetic Content  1 

Though synthetic content, may not be inherently harmful, it can accelerate and exacerbate pre-existing 2 
harms and negative impacts across the open information ecosystem, such as information integrity 3 
issues, synthetic child sexual abuse material (CSAM) and non-consensual intimate imagery (NCII), fraud, 4 
and intellectual property and copyright issues. Taking a risk-based and human-centered approach to 5 
synthetic content, within the use case and context is important, given that there are benign use cases 6 
for synthetic content, and the approach adopted also depends on the audience.  7 

The various issues that synthetic content presents affect how individuals consume information, can have 8 
negative effects on public safety and democracy. The negative consequences of synthetic content can 9 
uniquely and disproportionately impact individuals and communities who face intersectional 10 
discrimination and bias on the basis of gender, race and ethnicity, and other factors. The digital content 11 
transparency approaches discussed in this report on their own cannot comprehensively address the 12 
myriad of harms and risks that synthetic content poses but could be applied as tools to reduce harms 13 
and risks from synthetic content.  14 

Synthetic content that supports misinformation and disinformation, synthetic CSAM and NCII, and fraud 15 
and financial schemes have concentrated or diffused effects depending on many factors. The spread of 16 
synthetic content that supports mis or disinformation narratives on social platforms is what makes it 17 
harmful and have diffused effects across a target population. Disinformation that is created by a 18 
malicious actor but is never disseminated across social platforms will not have its intended effects to 19 
shape perception. In comparison, synthetic CSAM and NCII is harmful at its creation with concentrated 20 
effects on specific individuals when such content depicts or appears to depict, real individuals, and could 21 
be used for sextortion schemes, blackmail, re-victimization, and more. Further, even when synthetic 22 
NCII and/or CSAM does not depict or appear to depict, real individuals, their generation and 23 
dissemination contribute to the normalization of gender-based violence and violence against children. 24 
Synthetic content could also produce concentrated harms by bolstering fraud and social engineering, 25 
and impose financial costs on victims of these schemes, while having diffused effects on wider markets, 26 
businesses, and the economy.  27 

The harm and risks of synthetic content depend on factors including but not limited to the severity of 28 
harm from the content itself, target audience for the synthetic content; context in which content is used 29 
or misused; and sophistication of the actor creating and/or disseminating the content; and any social, 30 
economic, and health-related (including mental health) costs incurred in association with the creation 31 
and/or dissemination of the content.  32 

Specific techniques may be suitable in reducing or limiting particular harms and risks. Provenance data 33 
tracking techniques that record the origin and history of digital content can be used to affirm both the 34 
authenticity of content, and in some cases, the authority of the entity who issued the content. Content 35 
authenticity does not directly translate to trustworthiness; authentic content that has provenance 36 
information available can still be harmful, depending on the content itself, nature of the source, and 37 
how it may be shared across platforms. However, these techniques may be useful for resourced good 38 
faith actors to secure their content and provide content transparency to their target audiences. 39 

Synthetic content detection techniques may be more suitable for narrow use cases for analysts to 40 
determine whether specific adversarial content is AI-generated or not, or to detect covert watermarks in 41 
content. These techniques often have results that may be difficult for a layman or the wider public to 42 
interpret and may be more suitable as an approach for those conducting specific analyses, or for entities 43 
such as social media platforms, and specialized civil society organizations. 44 
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For high-risk or high-integrity applications, which could include election security, defense applications, 1 
CSAM/NCII investigations, and others, taking a defense-in-depth1 approach by utilizing more than one 2 
method will likely be important for organizations, to mitigate potential overreliance on any one 3 
approach or technique. The application of digital content transparency approaches to mitigate harms 4 
and risks from synthetic content is still relatively new; these techniques will continue to evolve, and a 5 
variety of technical and sociotechnical evaluations are needed to guide their implementation.  6 

Below is a table that outlines how different digital content transparency approaches and specific 7 
methods are currently applied and adopted, and how they could be used to mitigate harms and risks. 8 
Further information about these approaches and methods as well as their limitations are discussed in 9 
detail throughout the report. Lastly, more specific use case and context-based mitigations and controls 10 
for synthetic content are available in the Guidelines for Evaluating and Red-Teaming Generative AI 11 
Models and Systems and Dual Use Foundation Models2 and the Artificial Intelligence Risk Management 12 
Framework: Generative Artificial Intelligence Profile.3 13 

  14 

Digital Content 
Transparency 

approach 

Example Methods Current Applications Current Adoption Potential Use Cases to 
Mitigate Harms and 

Risks 

Provenance data 
tracking  

Metadata recording, 
digital 
watermarking  

Determining content 
authenticity, the 
source or origin of 
content  

Mainly for image 
and video, by high-
resource software 
and media entities 
(with some 
hardware entities)  

- IP protection via 
robust watermarks  

- Transparency about 
content origins and/or 
history  

Synthetic Content 
Detection  

Automated content-
based detection, 
provenance data 
detection, human-
assisted detection  

Determining whether 
content is AI-
generated, the 
presence and contents 
of provenance 
information  

Diffused across 
industry, with some 
civil society 
adoption, mainly 
focused on deepfake 
detection.  

- Analytical 
assessments of 
adversarial 
content through 
advanced multimodal 
detection 

- Public figure focused 
detection (deepfakes)  

- Detection of covert 
watermarks for 
developers and 
platforms  

 

1 Defense-in-depth refers to Information security strategy integrating people, technology, and operations capabilities to establish variable 
barriers across multiple layers and missions of the organization. See https://csrc.nist.gov/glossary/term/defense_in_depth 

2 TBA 

3 TBA 
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3. Current Approaches, Issues, and Opportunities 1 

This section of the report describes current techniques and related issues and opportunities.  2 

The most commonly used techniques to directly disclose to the audience how AI was used in the content 3 
creation process include:  4 

• content labels (e.g., visual tags within content, warning labels, pre-roll or interstitial labels in 5 
video and/or audio, and typographical signals in text highlighting generated AI text with 6 
different fonts),  7 

• visible watermarks (e.g., icons covering content indicating AI usage where the bigger the icon, 8 
the harder its removal), and 9 

• disclosure fields (e.g., disclaimers and warning statements to indicate the role of AI in 10 
developing the content, and acknowledgments to provide more context to the AI contribution 11 
and credits to reviewers).  12 

In contrast, indirect disclosure techniques require active effort to detect. These include:  13 

• covert watermarks 14 

• digital fingerprints, and  15 

• embedded metadata.  16 

They involve purposefully applying labels that are machine-readable and interpretable by technical 17 
systems. These are often identifiable by third-party entities and end users. 18 

Both direct and indirect labels can be applied automatically during content creation or they can be 19 
applied post-generation.  20 

Publishers and content platforms can use different types of labels to disclose content sources, such as 21 
clearly differentiated modalities of the generated content (image, text, audio, video).  22 
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 1 

Figure 1. Digital content transparency mechanisms can be broken down into provenance data tracking and 2 
synthetic content detection, each with multiple subcategories. Provenance Data Tracking can be applied to both 3 

synthetic and non-synthetic content where Synthetic Content Detection is employed to determines whether a 4 
given piece of content is synthetic or not. 5 

This section highlights the current technical approaches for digital content transparency that this report 6 
covers in subsequent sections. The main techniques that the report discusses are provenance data 7 
tracking and synthetic content detection. Content authentication is not a technique, but rather a 8 
process that reveals the authenticity of all digital content (not just synthetic) by examining its origin and 9 
history. Therefore, it operationalizes provenance data tracking methods.  10 

 11 

Content 
authentication 

is a process that utilizes provenance data tracking methods (metadata recording 
and digital watermarking) to determine the authenticity of content by examining 
its origin and history. (i.e., the content has not been altered, or at least that the 
visual (or semantic) characteristics of the content are unchanged). 

Provenance data 
tracking 

records the origin and history for digital content, which assists in determinations 
about authenticity. It consists of techniques to record metadata as well as overt 
and covert digital watermarks on digital content. Provenance data tracking can 
help to establish the authenticity, integrity, and credibility of digital content.  

Synthetic 
content 
detection 

refers to techniques, methods, and tools used to classify whether a given piece of 
content is synthetic or not. Synthetic content detection may detect the existence 
of provenance information, such as digital watermarks, that was recorded, or it 
may look for other characteristics to help determine whether content has been 
generated or manipulated by AI.  
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 Provenance Data Tracking  1 

Provenance data tracking can help establish the authenticity, integrity, and credibility of digital content 2 
by recording the content’s origin and history. It consists of techniques to embed or store metadata as 3 
well as overt and covert digital watermarks on digital content to indicate synthetic or authentic origins 4 
of content. Current methods for provenance data tracking include digital watermarking and metadata 5 
recording. These techniques vary in their implementation and their robustness across various types of 6 
content (images, text, audio, video).  7 

3.1.1. Digital Watermarking  8 

Digital watermarks have long been used to indicate content origins, with those shown on stock 9 
photography and other image previews being one popular usage. In terms of digital watermarking 10 
standards, The Advanced Television Systems Committee (ATSC), has produced well known set of 11 

standards for audio and visual content such as ATSC A/334 and ATSC A/335 (Appendix A).  12 

Digital watermarking involves embedding information into content (image, text, audio, video) while 13 
making it difficult to remove. Such watermarking can assist in verifying the authenticity of the content or 14 
characteristics of its provenance, modifications, or conveyance. Watermarks can be either overt or 15 
covert depending on the content’s audience. (See further digital watermark use cases and applications 16 
in the Appendix B and Appendix C.) 17 

 As an example, in an image watermarking system, a user would input an image, a watermark, and an 18 
embedding security key into an encoder to get a security key for extraction together with the 19 
watermarked image. The encoder algorithm controls how the embedding of the watermark will be 20 
applied to the image. On the other hand, a decoder uses the security key to extract the watermark from 21 
the watermarked image. Afterwards, the extracted watermark can be compared to the original 22 
watermark for verification.  23 

Each type of watermarking has advantages and limitations. 24 

Overt digital watermarks can be perceived directly by the human senses (e.g., a semi-transparent logo 25 
affixed to an image, text, or other audio, or video labels) by the audience of the content. An overt 26 
watermark may indicate the origin or source of content, including whether it was synthetically 27 
generated. If overt digital watermarks are limited to a small portion of the content, they can easily be 28 
cropped out or removed, diminishing their value and purpose. However, if these watermarks are applied 29 
across a large swath of the content, removing them can make that content too corrupted to be usable. 30 
In addition, overt watermarks may not be easily machine-readable, which can be a concern for 31 
identifying these watermarks at scale. 32 

Covert digital watermarks are machine-readable watermarks involving subtle perturbations of the 33 
content that are hard for humans to detect. For example, a watermark can be embedded by altering the 34 

least significant bit (LSB) of some pixels in an image. These watermarks can be more secure than overt 35 
watermarks, as they are typically harder to remove. A covert watermark must be first detected to verify 36 
its presence by a digital watermark detector and then as applicable extract any information embedded 37 
within the watermark supporting the provenance of the content, which will have some nonzero 38 
probability of error. The effectiveness of a covert watermark is contingent on how accurately detectors 39 
can distinguish when the watermark is present and extract any additional information that may be 40 

included. Considerable research is focusing on how to embed covert watermarks into different types 41 
of digital content. 42 

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://assets.mofoprod.net/network/documents/In_Transparency_We_Trust.pdf
https://link.springer.com/chapter/10.1007/978-981-13-7166-0_59
https://link.springer.com/chapter/10.1007/978-981-13-7166-0_59
https://link.springer.com/chapter/10.1007/978-981-13-7166-0_59
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
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Digital watermarks are most effective when they possess the following attributes: 1 

Low distortion The watermark should not affect the quality of how a human would perceive the 
watermarked content compared to the original content 

Robust The watermark should be robust under various types of typical innocuous 
modifications—such as compression, filtering, or cropping—so that it can still be 
detected or extracted even after content has been altered. 

Secure The watermark should be secure against unauthorized attempts by malicious users 
to remove or tamper with the watermark information. 

Sufficiently high-
capacity 

The watermark should have sufficient capacity to embed required amounts of 
information for its intended purpose, such as ownership information, copyright 
marks, or authentication data. A watermark may only need, in some use cases, to 
encode one bit (e.g., whether a given system generated the content). If more 
information is encoded in the watermark, it may be human-readable information, 
such as text or logos, or machine-readable information, such as binary codes or 
digital signatures. (In principle, a sufficiently high-capacity watermark could embed 
arbitrary metadata.) 

Efficient The watermarking process should be efficient and computationally feasible, 
allowing for fast and reliable embedding and detection of the watermark 
information. 

Minimally 
disruptive 

The watermarking process should be transparent to the user, meaning it should 
not require significant changes to the content creation or distribution process and 
maintain downstream uses. 

 2 

This table highlights some of the design choices in utilizing watermarks for digital content: 3 

Fragile or 
Robust 

Watermarking techniques can be more or less robust to modifications and secure 
against attacks. Fragile watermarking methods are designed to become invalid in 
the face of any changes to the content, while robust methods are designed to 
withstand certain types of attacks or modifications. 

Overt or Covert Overt watermarks, such as logos or text overlayed on an image, are visible or 
audible to the content’s normal audience, while covert methods are designed to be 
detectable only by those actively looking for them. 

Blind or Non-
Blind 

Watermarking techniques can be blind or non-blind based on whether the original 
content is required for detecting the watermark. Blind watermarking methods do 
not require the original content for detection, while non-blind methods do. Non-
blind watermarks add extra security to the content as it needs the original content 
to verify the watermark (such as for copyright use cases on licensed images), while 

https://link.springer.com/article/10.1007/s11277-021-08177-w
https://www.sciencedirect.com/science/article/pii/S0925231222002533
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844175
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blind watermarks can be more suitable for data hiding applications (such as covert 
communication) or even preventing the sharing of protected media online.  

Private or Public Watermarking techniques can be private or public based on the availability of the 
algorithms or cryptographic information needed to apply or validate the 
watermark. 

Reversible or 
Irreversible 

Reversible methods entail embedding the watermark into the digital content in 
such a way that the original content can be restored given the needed information 
to extract the watermark and retrieve the original content. In irreversible methods, 
the semantic distortion that is caused by modifications to the content cannot be 
reversed. (This distinction does not apply to watermarks that are applied during 
generation, where there is no original to revert to.) 

3.1.1.1.  Technical methods for covert watermarks 1 

Methods for covert watermarking of GAI outputs must modify some characteristic of the content that 2 
can be subtly perturbed; this typically results in a change to the statistical properties of the content 3 
(such as perplexity measuring uncertainty in predicting the next word, and burstiness measuring the 4 
variation of sentences in language models). There also must be a systematic way of perturbing these 5 
characteristics so that the watermark can easily be generated, and a detector can recognize with high 6 
probability both when it is present and when it is not. 7 

Below are some examples of properties that can be perturbed, along with the applicable types of 8 
content and examples that leverage these properties. These examples of properties that can be 9 
perturbed should be connected to the above design choices table to account for specific contextual use 10 
cases. 11 

 Explanation 
Potentially 

applicable to 
Examples 

Stage of 
application 

Risks and technical 
limitations 

Individual 
samples 
(pixels, audio 
samples) 

Predictably 
chosen pixels 
or audio 
samples can 
be altered to 
embed 
content such 
as a 
watermark. To 
minimize 
perceptual 
distortion, 
modifications 
can be limited 

Image, audio, 
video 

LSB-based 
watermarki
ng 

Applied 
post-
generation  

Vulnerability to 
attacks (e.g., 
compression, 
cropping, filtering, 
scaling), overt 
distortions in the 
content, limited 
robustness, 
security concerns 
including a tradeoff 
between capacity 
and 
imperceptibility, 
and dependency 

https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
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to a small and 
relatively 
unimportant 
portion of 
each selected 
pixel or 
sample, such 
as the least 
significant bit 
(LSB). 

on the host media 
(e.g., texture of 
images) 

 

 

 

Frequency 
coefficients 

Every piece of 
content that 
consists of 
samples laid 
out in time 
and/or space 
can be re-
represented in 
terms of 
spatial or 
temporal 
frequencies 
instead of 
individual 
samples. The 
balance 
between some 
of these 
frequencies 
can be 
perturbed 
with minimal 
impact on 
human 
perception, 
much as JPEG 
compression 
discards some 
of these 
frequencies 
from images 
with little 
impact. 

Image, audio, 
video 

Discrete 
Cosine 
Transform 
(DCT) 
watermark, 
Discrete 
Fourier 
Transform 
(DFT) 
watermark 

Applied 
post-
generation  

Vulnerable to 
geometric attacks 
(cropping, scaling, 
rotation), and 
requires high 
computing 
resources and 
processing time to 
run. 

https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
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Initial noise 
output for 
diffusion 
models 

Many recent 
GAI models 
are based on 
“diffusion 
models,” 
which start 
from a full 
output that 
consists of 
random noise, 
then 
iteratively 
refine the 
noise into an 
output 
matching the 
prompt. The 
initial noise 
output can 
embed a 
predefined 
pattern, which 
can later be 
recovered by 
someone in 
possession of 
the model . 

Image, text 
(in principle), 
audio, video  

Tree ring 
watermark 

Applied 
during 
generation 

Robustness against 
GAI-based removal 
methods and 
attacks, Flexibility 
in message 
embedding (e.g., 
fixed vs dynamic 
messages), Security 
risks and privacy 
concerns, 
Computations and 
economic costs, 
Applicability to 
various modalities, 
and it is more 
suitable in private 
settings. 

 

Token 
probabilities 

Large 
language 
models 
typically 
generate text 
one “token” 
(or sub-word 
chunk) at a 
time. The 
probabilities 
of different 
tokens 
occurring can 
be used to 
embed 
information. 

Text 
LLM 
watermark 

Applied 
during 
generation 

Robustness against 
modifying text 
attacks, Perplexity 
and quality 
degradation, 
Coordination 
between LLM 
provider and 
detector, and 
scalability to long 
text contents 

 1 

https://arxiv.org/abs/2305.20030
https://arxiv.org/abs/2305.20030
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2310.15264.pdf
https://arxiv.org/pdf/2310.15264.pdf
https://arxiv.org/pdf/2310.15264.pdf
https://openreview.net/pdf?id=FpaCL1MO2C
https://openreview.net/pdf?id=FpaCL1MO2C
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For many of these properties, a variety of techniques can be used to systematically perturb them into a 1 
watermark. Example methods include: 2 

 Explanation Potentially applicable 
to (properties) 

Examples Risks and Technical 
Limitations 

Direct 
encoding 

Where the 
element to 
be perturbed 
is a piece of 
data that is 
contained in 
the output, 
the 
watermark 
data can be 
embedded 
directly as 
replacement 
data.  

Individual samples, 
frequency coefficients.  

For example, the LSBs 
of image pixels can be 
replaced with 
watermark 
information. (This 
would not work for 
methods that perturb 
the generation process, 
as that process is not 
directly encoded in the 
output.) 

 

LSB-based 
watermarking, 
Discrete 
Cosine 
Transform 
(DCT) 
watermark, 
Discrete 
Fourier 
Transform 
(DFT) 
watermark 

Can affect imperceptibility, 
Computational complexity, 
Detectable alterations in the 
signal, Security risks due to 
ease of watermark removal, 
Robustness risks due to 
transformations in the 
watermarked content, and 
low embedding capacity 
leading to inadequate 
embedding of information; 

Cryptographic 
hashing or 
encryption 

A 
cryptographic 
hash function 
can be used 
to generate a 
“hash value,” 
a pseudo-
random 
number, that 
determines 
how 
perturbations 
are 
performed.  

Individual samples, 
frequency coefficients, 
token probabilities 

 

For audiovisual 
content, a hash of the 
original image, or data 
derived from it, can be 
embedded via direct 
encoding. Hashing can 
also be used for text 
watermarking: at each 
step, the hash value is 
used to designate “red” 
and “green” lists of 
tokens, and then the 
model preferentially 
selects a next token 
from the green list in a 
largely covert but 
statistically detectable 
way. To enable private 
operation, an 

Robust 
hashing for 
visual 
watermarking, 
LLM 
Watermarking 

Fragile to minor changes in 
the content as cryptographic 
hashes are highly sensitive, 
Limited amount of 
embedded information due 
to a fixed-size hash, and 
combining cryptographic 
hashes with watermarking 
adds more complexity in 
implementation compared 
to standalone watermarking 
techniques. 

https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.mdpi.com/2078-2489/11/2/110
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
http://ivizlab.sfu.ca/arya/Papers/IEEE/Multimedia/2001/Oct/Cryptography%20and%20Watermarking.pdf
http://ivizlab.sfu.ca/arya/Papers/IEEE/Multimedia/2001/Oct/Cryptography%20and%20Watermarking.pdf
http://ivizlab.sfu.ca/arya/Papers/IEEE/Multimedia/2001/Oct/Cryptography%20and%20Watermarking.pdf
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encryption cipher with 
a key known only to 
the model operator can 
be used as the hash 
function. 

Machine 
learning 

A machine 
learning 
system can 
be trained to 
perturb a 
piece of 
content in a 
way that is 
reliably 
detectable. 
The 
difference 
between this 
technique 
and direct 
encoding is 
that the 
perturbation 
happens 
during the 
data 
generation 
process, and 
not after the 
output is 
generated. 

Any GAI systems can be 
fine-tuned to generate 
recognizable 
watermarking patterns 
in the course of 
generation. 

Machine learning 
perturbation methods 
usually require training 
an accompanying 
machine learning-
based detector. These 
methods are easiest to 
use for private 
watermarks or where 
the watermarking 
algorithm is not known 
publicly. 

 

Stable 
Signature,  
(commercial 
tool) 

Computationally intensive, 
May introduce lack of 
interpretability/explainability 
of the embedding and 
detection process, 
Performance may degrade 
for data outside the training 
distribution, and vulnerable 
to deepfake generation 
networks to remove the 
watermarks. 

3.1.1.2. Additional Issues for Consideration 1 

Technical trade-offs: Watermarking techniques may require trade-offs between: 2 

Robustness (the durability of a watermark) against adversarial uses and computational complexity 3 
(the resources required to implement watermarking). Less complex algorithms may not provide 4 
adequate durability against adversarial manipulations, with a negative impact on the security and 5 
performance of the watermark. 6 

Robustness and low distortion: Another trade-off is between robustness and low distortion. A key 7 
challenge is ensuring that the watermark cannot be easily removed or altered while minimizing 8 
distortion. Typically, the mechanism by which a watermark is embedded entails the modification of 9 
components within digital content. As a result, the introduction of these changes in the digital content 10 

https://arxiv.org/abs/2303.15435
https://arxiv.org/abs/2303.15435
https://www.mdpi.com/2079-9292/12/1/74
https://www.mdpi.com/2079-9292/12/1/74
https://www.mdpi.com/2079-9292/12/1/74
https://www.mdpi.com/2079-9292/12/1/74
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7057071&tag=1
https://www.mdpi.com/2078-2489/11/2/110
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creates a verifiable signal that can be identified and extracted. Reaching a high degree of robustness can 1 
adversely impact content quality. Conversely, minimizing how much the watermark distorts the content 2 
could make it easier to remove the watermark (or, equivalently, harder to detect it which can lead to 3 
higher error rates)—which might decrease its robustness.  4 

Capacity and quality trade-offs are also relevant. Embedding a watermark can reduce the quality of the 5 
content by making or inserting alterations that could corrupt the original digital content. Moreover, for 6 
some types of watermarks, increasing the capacity of the watermark further reduces the quality. 7 
Capacity refers to the amount of information that can be hidden in a watermark, without perceptibly 8 
distorting the digital content. Watermarks can be intrusive and negatively impact the visual and auditory 9 
components of audiovisual content or potentially the fluency or accuracy of text. For example, this is 10 
especially true of visible watermarks on color images, and even more so if the watermark itself is 11 
colorful: the watermark may interact in more complex ways with the color pattern in the host image 12 
than in a grayscale or binary image.  13 

Adversarial tampering: Some watermarks, particularly those that are fragile or lack robustness, can be 14 
removed or tampered with, which may make them inadequate for purposes that require high integrity. 15 
As previously noted, overt watermarks applied to small portions of a piece of content can easily be 16 
edited out. Black-box attacks, or attacks conducted without watermark access, against digital 17 
watermarks using adversarial machine learning have demonstrated success in tampering with digital 18 
watermarks, even without knowledge or access of how the watermarking mechanism works. To date, 19 
researchers have shown the vulnerability of many covert watermarks to tampering and manipulation 20 
and how it is possible to evade or forge current watermarking methods. However, adversarial attacks 21 
against more robust forms of watermarking, such as watermarks that are cryptographically applied, are 22 
difficult to execute by comparison. There is some initial research that demonstrates how image 23 
watermarks can be designed to be robust against state of the art watermark attacks. 24 

Most watermarking techniques involve software that must be run either after an output is generated or 25 
as an additional set of operations during the generation process. The watermarking behavior is not built 26 
into the model itself. Thus, if someone has access to the model’s source code, they can easily modify 27 
that source code to disable watermarking; they do not typically need to retrain the model. In cases 28 
where the generative model itself has been trained to watermark, it may be possible to remove that 29 
behavior with limited additional training. 30 

Trust: While digital watermarks can contribute to information integrity, they cannot guarantee it in a 31 
vacuum. Further research is needed on how digital watermarks may affect public perception or trust in 32 
digital media content. Also, false positives and false negatives can occur when using watermarks to 33 
authenticate the origin of content, reducing trust in the accuracy of watermarks and the watermarking 34 
process. Furthermore, watermarks can be exploited to create a false sense of security or trust in content 35 
if malicious actors are able to forge trusted watermarks or to add their own watermarks and apply them 36 
to misleading or untrustworthy content. Such an attack, if discovered, would likely also reduce trust in 37 
all similar content, impacting trust in the open information ecosystem. Synthetic content is a global 38 
phenomenon, which affects digital citizens around the world. There may be lower capacity to implement 39 
digital watermarking approaches in lower-resourced markets and regions, particularly for civil society 40 
organizations in these regions. 41 

Scale: Many covert watermarking methods or protocols rely on unique, method-specific detectors. If 42 
different AI model developers created their own unique watermarking schemes, users may have to 43 
utilize multiple detection services created by these developers to know the source or origin of synthetic 44 

https://arxiv.org/abs/2306.04634
https://arxiv.org/abs/2306.04634
https://www.sciencedirect.com/science/article/pii/S0925231222002533#b0310
https://www.sciencedirect.com/science/article/pii/S0140366422000664
https://www.sciencedirect.com/science/article/pii/S0045790621002408?ref=pdf_download&fr=RR-2&rr=85fb71f4ffc77cfc
https://ieeexplore.ieee.org/document/8553343
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/html/2401.04247v1
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
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content created by different GAI tools, which can be inefficient and increase the burden on the 1 
audience, particularly for platforms. Open source standards and/or publicly available databased or 2 
resources that host multiple detectors would make the identification of watermarks streamlined, but 3 
come with security risks. There is also an educational barrier that must be addressed, for users to 4 
understand how to utilize detection tools for watermarks and interpret results. Furthermore, scaling is 5 
challenging for methods that involve cryptographic keys or machine learning tools. If one entity holds 6 
the keys or algorithms, they must be trusted and may become a bottleneck, either as a single point of 7 
failure or a process inefficiency. However, if the keys or algorithms are possessed by many entities, they 8 
could allow any actor to apply the watermark and permit bad actors to sidestep watermark generation 9 
by repeatedly generating content until they find an output that can fool the detector. Detection tools 10 
that are open source or otherwise not subject to rate limiting may be particularly susceptible to such an 11 
attack. 12 

Opportunities for Further Development: Considerable research is focusing on how to embed 
covert watermarks such as statistical watermarks applied during generation, onto different types of 
digital content. More research is needed to understand how the application of digital watermark 
labels may affect public trust in digital content and the risks of inadvertent harms. For example, 
people with disabilities and those with limited language skills regularly using generative AI to create 
content may be discriminated against if the content they publish on platforms is labeled as AI-
generated using watermarking, given potential existing issues of trust and credibility in AI-
generated content online, and in relation to the context and use cases for generation. More 
research also is needed on emerging watermarking techniques such as statistical watermarks, ways 
to improve scale for detection techniques, how to improve watermark security through advanced 
cryptography that reveals minimal information to watermark detectors and future advanced 
cryptographic techniques such as zero-knowledge proofs, and developing best practices for 
implementation. 

3.1.2. Metadata Recording  13 

Metadata can provide information about a set of data and its content and contribute to digital content 14 
transparency. Metadata can be generated whenever digital content is created, uploaded, downloaded, 15 
or modified. It can be stored either internally in the same file or structure as the data (embedded 16 
metadata), or externally in a separate file. Almost all software applications use some type of metadata, 17 
including for document management, social media, emails, websites, databases, and geospatial objects.  18 

Metadata can generally travel as part of the data it describes and provides information about the 19 
content's properties, structure, origin, purpose, time and date of creation, author, location, standards, 20 
file size, quality, versions, editing history, and other details. Thus, metadata can be applied to all media 21 
types (images, text, audio, video) but can be manipulated by anyone. These properties can improve the 22 
accuracy of metadata, since the metadata should be readily changed whenever data is changed. 23 
However, metadata is often stripped when files are shared, such as via social media platforms. 24 
Metadata generally can also easily be wiped, often for privacy reasons such as when content is uploaded 25 
on social media platforms or through adversarial tampering.  26 

Metadata also can be used to help differentiate between authentic and synthetic or manipulated 27 
content, contributing to data integrity. Metadata recording approaches can also explicitly indicate 28 
synthetic origins of content.  29 

https://eprint.iacr.org/2023/1776.pdf
https://foundation.mozilla.org/en/research/library/in-transparency-we-trust/research-report/
https://arxiv.org/pdf/2309.06779.pdf
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://link.springer.com/book/10.1007/978-3-319-72652-6
https://www.sciencedirect.com/science/article/pii/S2210832717300753?via%3Dihub
https://blogs.loc.gov/thesignal/2013/04/social-media-networks-stripping-data-from-your-digital-photos/
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Using Digital Fingerprints to Identify Metadata: Digital fingerprints, which are hashes that are 1 
predictably generated from the content itself, can also be used to generate unique identifiers to which 2 
metadata can be associated externally to the content itself. Digital fingerprints are commonly used 3 
across the technology industry to tag and identify known harmful, illegal and/or sensitive content, 4 
especially image content, through the sharing of content through hash databases between technology 5 
platforms, civil society, and other entities. Hashing (including both cryptographic and perceptual 6 
hashing) allows information about content to be shared without sharing the content itself, which serves 7 
to preserve privacy. Several databases and tools have been created to store hashes of harmful and/or 8 
illegal images and metadata about these images.  9 

Two notable examples of the use of digital fingerprints are the Global Internet Forum to Counter 10 
Terrorism (GIFCT) and Tech Against Terrorism. The GIFCT uses its hash-sharing database to rapidly 11 
identify and share signals of terrorist and violent extremist activity with all of its member organizations, 12 
which include many large technology platforms. Tech Against Terrorism’s Content Analytics Platform 13 
(TCAP) works similarly and automates the detection and removal of verified terrorist content on 14 
technology platforms, by hashing the content as well as via metadata about the content. (Later sections 15 
of this document on preventing and reducing the generation of synthetic CSAM and NCII discuss the use 16 
of hashes for content in greater detail.)  17 

The most common types of metadata used for tagging or labeling digital content include: 18 

Descriptive 
metadata 

provides some descriptive information for discovery and identification such as file 
type, author, title, language, date created, and other specifications. 

Structural 
metadata 

provides logical and physical structural information about the containers of data and 
indicates how compound objects are put together—for example, how frames are 
ordered to form a video. It describes the types, versions, relationships, and other 
characteristics of digital materials. 

Administrative 
metadata 

provides information about the source of the content, its ownership, copyrights, 
licensing, and control permissions for easier management of the resource 

Technical 
metadata 

provides technical information like runtime, file type, size, resolution, color space, 
encoding format, compression algorithm, and other specifications. 

Provenance 
metadata 

provides information on the origins of a data resource, ownership, any 
transformation that the data may have undergone, usage of the data, and the 
archive of the data resource. This information helps track the lifecycle of a resource. 
Provenance metadata is generated whenever a new version of a data set is created 
and indicates the relationship between different versions of data objects. This allows 
users to query the relationship between versions and includes either or both fine- or 
coarse-grained provenance data on data resources. 

 19 

Appendix C includes some of the most commonly known metadata standards across specific and 20 
multimodality data types. 21 

https://gifct.org/hsdb/
https://terrorismanalytics.org/
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3.1.2.1. Authenticating Metadata 1 

Metadata can be cryptographically signed. A cryptographic or digital signature is “an electronic analogue 2 
of a written signature that provides assurance that the claimed signatory signed, and the information 3 
was not modified after signature generation.” When metadata is signed with a digital signature, it can 4 
provide confidence about the contents of the metadata by determining the authenticity of electronically 5 
stored information.  6 

A digital signature algorithm includes a signature generation process and a signature verification 7 
process, to provide assurance that the claimed signatory signed the given piece of information. A 8 
signatory uses the generation process to create a digital signature on data via a private key, which is 9 
kept secret. The verifier then uses the verification process via a public key that corresponds to the 10 
private key to verify the signature. In addition, the checksums and/or a digital signature can be 11 
embedded as metadata to verify the integrity of a digital content, allowing users to verify that the 12 
content has not been altered since its creation. 13 

Utilizing digital signatures to sign metadata increases integrity, security, and tamper-evidence of the 14 
metadata. Unsigned metadata without verifiable credentials is not tamper-evident nor has it been 15 
stored with secure encryption. Metadata that is proactively embedded in content is more secure when it 16 
has been validated by digital or cryptographic signatures. (See below for additional considerations.) 17 

3.1.2.2. Metadata and Content Authentication 18 

Metadata can be used to verify the origins of content and how the history for a piece of content may 19 
change over time. Current entities creating specifications for metadata to verify content authenticity 20 
include the Coalition for Content Provenance and Authenticity (C2PA) and the International Press 21 
Telecommunications Council (IPTC). Further, secured metadata information that is disclosed to users can 22 
assist with information integrity and increase confidence in the content issuers’ digital identity.  23 

Provenance data tracking for metadata is only comprehensive if the software or hardware used to 24 
generate digital content and any other platform or tool used to modify or publish the content uses the 25 
same interoperable framework for retaining and securing metadata and establishing confidence that a 26 
particular entity issued the content.  27 

For example, the IPTC has updated its Photo Metadata User Guide to include guidelines for using 28 
embedded metadata to signal “synthetic media” content created by GAI systems. They have developed 29 
the “digital source type” vocabulary, which now covers a range of AI-generated types such as: 30 

Trained algorithmic 
media  

is created using a model derived from sampled content. 

Composite synthetic 
media 

is a composite that includes synthetic elements. 

Algorithmic media 
is created entirely by an algorithm not based on any sampled training 
data (for example, an image created by software using a mathematical 
formula). 

 31 

https://www.nist.gov/cryptography
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://www.iptc.org/std/photometadata/documentation/userguide/
https://iptc.org/news/iptc-publishes-metadata-guidance-for-ai-generated-synthetic-media/
https://developers.google.com/search/docs/appearance/structured-data/image-license-metadata#iptc-photo-metadata
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Some industry stakeholders (e.g., Google, Midjourney, Shutterstock) are starting to adopt the IPTC 1 
metadata in their outputs.  2 

In an ideal interoperable digital environment, individuals would have access to a piece of content’s chain 3 
of provenance information in order to maximize content transparency. For example, metadata attached 4 
to an AI-generated image would convey its origin and what time it was created, along with the artist’s 5 
name (attached in an opt-in manner). When that image is posted on a social media platform that has 6 
opted into an interoperable framework for processing metadata, the metadata would be available to 7 
users interacting with the image. In practice, however, this is challenging to implement and scale for 8 
various reasons, such as platforms stripping metadata for privacy and data management reasons. Some 9 
representative research systems and prototypes were proposed in 2018, 2019, and 2021.  10 

3.1.2.3. Additional Issues for Consideration 11 

Privacy: Without privacy mechanisms and protections used in tandem with metadata recording, 12 
individuals and organizations could experience sensitive metadata leaks and violations of privacy. For 13 
example, if users are not aware that metadata is embedded at the capture or generation of synthetic or 14 
authentic content, they may inadvertently reveal private information about when and where an image 15 
was taken, and with what device. Furthermore, it is generally recommended that all metadata recording 16 
solutions include a process for users to opt-in and determine which metadata can be removed for 17 
privacy concerns. Systems that host metadata information should also ensure that privacy mechanisms 18 
are in place to prevent privacy leakage through the visibility of sensitive metadata across the network. 19 

If metadata attached to content lacks these controls, then user privacy—especially for vulnerable 20 
populations—could be at risk. Malicious entities could co-opt metadata recording solutions to appear to 21 
promote transparency, while not providing any opt-in mechanism for tagging metadata and exploiting 22 
access to user information. Many platforms strip metadata from files on the Internet to prevent 23 
metadata leakage. Balancing the sharing of metadata for content transparency while also allowing users 24 
to take control over data that is shared is paramount. 25 

Trustworthiness and Integrity: A recent study on provenance of digital content revealed users’ lack of 26 
confidence in the trustworthiness of media when it did not have provenance information attached to it. 27 
Further, research shows that users do not clearly disambiguate provenance information from the 28 
credibility of the digital content itself, both of which demonstrate the limited and complicated role of 29 
provenance information in addressing the risks of mis- and disinformation in digital content. Lastly, the 30 
ability to tamper with metadata can undermine even the value it provides to people attempting to 31 
evaluate and understand content. 32 

Security: Embedding metadata into content poses a wide array of concerns. Malicious attacks on 33 
metadata are possible even with secure infrastructure in place. Using a digital signature hardens the 34 
security posture of a metadata recording solution. The addition of cryptographic proofs for metadata 35 
can help prevent data tampering, as asymmetric encryption ensures that metadata has been secured by 36 
its signatory. However, encryption schemes and digital signatures are not foolproof. A variety of 37 
malicious attacks can be conducted on digital signatures to undermine their validity and 38 
trustworthiness. These attacks exploit parts of the digital signature creation system or the digital 39 
signature verification system. For example, the digital signature creation system does not necessarily 40 
protect the signer from signing a completely different document or piece of content. In this case, the 41 
attacker deceives the signer to sign a document that can benefit the attacker or be inconsistent with the 42 
signer’s interests. Attackers could also modify information prior to the computation of the signature by 43 

https://www.iptc.org/news/midjourney-and-shutterstock-ai-sign-up-to-use-of-iptc-digital-source-type-for-generated-ai-content/
https://www.sciencedirect.com/science/article/pii/S2210832717300753#:~:text=The%20overall%20process%2C%20a%20message,i.e.%20identification%20and%20non%2Drepudiation.
https://ieeexplore.ieee.org/document/8668407
https://dl.acm.org/doi/pdf/10.1145/3458305.3459599
https://knightcolumbia.org/content/how-to-prepare-for-the-deluge-of-generative-ai-on-social-media
https://dl.acm.org/doi/pdf/10.1145/3610061
https://www.sciencedirect.com/science/article/abs/pii/S0167404812001794#sec7
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adding or removing data before it is secured. These examples illustrate that even with digital signatures 1 
in place, vulnerabilities can be exploited to infringe on metadata security. Mitigation approaches for 2 
digital signature attacks include strong authentication measures, regularly updating digital signature 3 
software to ensure latest security patches, verifying the authenticity and validity of digital certificates 4 
before accepting digitally signed documents, encrypting sensitive data at storage and transmission 5 
times, and performing regular audits. 6 

Metadata management and quality: The technical challenges for metadata management include the 7 
need for organizational processes, such as metadata management principles, and security solutions 8 
while optimizing for system performance and reducing latency. The value of embedded metadata is 9 
contingent on processes to create, input, and manage it. For example, systems to track metadata (or any 10 
provenance technique) will be more successful if they are interoperable across different platforms and 11 
metadata is not stripped. How external systems interact with a system that tracks metadata is an 12 
important consideration. Organizations may choose to establish principles to manage and secure 13 
metadata at an organizational level. Those principles could include guidance about how metadata 14 
descriptions can be constructed to be useful without being exhaustive; that also could help with 15 
scalability and the understanding of metadata labels. Exploring and deploying techniques such as digital 16 
signatures while reducing computational or communication overhead and/or latency costs can assist 17 
with implementation. 18 

Furthermore, as hardware, software, and file formats become outdated, the need for continued 19 
accessibility necessitates migration of metadata to new platforms or systems. This may be addressed in 20 
part by storing metadata in formats that are resilient to technological changes and compatible with 21 
future systems. The compatibility of metadata is also bolstered by the use of a standard and open 22 
format for usable and reusable metadata. 23 

Lastly, the completeness and accuracy of metadata is important in its management. Metadata 24 
completeness refers to the presence of all possible relevant attributes and information necessary to 25 
describe a digital resource adequately. This includes descriptive details, administrative information, 26 
structural relationships, and technical specifications. Incomplete metadata can result from manual entry 27 
errors, lack of standardized guidelines, or automated processes that fail to capture all relevant 28 
information. Metadata accuracy refers to the correctness and reliability of the information contained in 29 
the metadata. Accuracy can be compromised due to human error, outdated or incorrect information 30 
sources, or inconsistencies in metadata creation practices. Incomplete or inaccurate metadata can lead 31 
to unreliable descriptions of digital content and can weaken digital content transparency. 32 

Opportunities for Further Development: Further research is needed to understand how metadata 
recording may impact user privacy and security, security of the metadata itself, how to mitigate 
adversarial uses and modifications of metadata recording, how it may impact trust and information 
integrity in digital content, the development of robust and open metadata standards, and how to 
develop best practices on completeness vs accuracy tradeoffs and scaling issues such as migrating 
metadata in new platforms or systems in metadata management.  

3.1.3. Effectiveness of Provenance Data Tracking Techniques Across Different Types of Content  33 

This section describes how provenance data tracking approaches vary in their current levels of 34 
robustness and effectiveness across different types of content and applications.  35 

https://www.digitizationguidelines.gov/audio-visual/documents/DPX_Embed_Guideline_20170814.pdf
https://iomovo.medium.com/what-is-digital-metadata-and-why-should-i-care-about-it-388accf6e0b
https://iomovo.medium.com/what-is-digital-metadata-and-why-should-i-care-about-it-388accf6e0b
https://iomovo.medium.com/what-is-digital-metadata-and-why-should-i-care-about-it-388accf6e0b
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3.1.3.1. Images 1 

Synthetic images are widely recognized as contributing greatly to harms from misinformation, 2 
disinformation, CSAM, and NCII. Provenance data tracking techniques are further developed for images 3 
than for any other medium, though adoption still remains low to reduce synthetic content harms. 4 
Frameworks such as C2PA, as well as ongoing digital watermarking research, largely focus on 5 
provenance data tracking approaches to images. Images can be manipulated in various ways, such as by 6 
altering pixels or by adding overlays, which also makes the medium better suited than others to 7 
provenance data tracking approaches.  8 

Early research shows that even for robust covert watermarking protocols, it is possible to remove, alter, 9 
or generally manipulate watermarks. Some researchers also report that a family of regeneration attacks 10 
on invisible watermarks applied to images can render watermarks ineffective. Further, bad faith actors 11 
could apply watermarks to untrustworthy content, both authentic content and malicious synthetic 12 
content, to undermine information integrity. There are similar issues with the potential abuses of 13 
embedded metadata: actors could utilize existing provenance specifications to infringe on user privacy, 14 
and reduce information integrity broadly, as discussed in previous sections.  15 

3.1.3.2. Text  16 

Text is considered by far the most difficult modality when it comes to maintaining provenance given the 17 
nature of text—it is far easier to modify a pixel of an image with minimal distortion in comparison to a 18 
word. Provenance data tracking methods for text can be more challenging, given that structural 19 
modifications to text content could be easier to spot and subsequently removed. This can also be 20 
affected by the structure of written contracts, government official documents, blogs, news reports, and 21 
other text material. Much of the reported work on provenance data tracking for text focuses on 22 
differentiating synthetic text from human-written text. The main tracking methods proposed to deal 23 
with this issue include watermarking; perplexity estimation; negative log-likelihood curvature; 24 
stylometric variation methods (differentiating between human linguistic style and structure compared 25 
to AI text style); burstiness estimation (differentiating between the word choice and vocabulary size of 26 
humans compared to AI text outputs); and classifier-based approaches (building classifiers based on 27 
training data of human-written text and AI-generated text).  28 

All provenance data tracking techniques discussed in this report when applied to text have limitations 29 
and can be vulnerable to tampering. For example, watermarking methods can be defeated or weakened 30 
through paraphrasing by humans or by machines. When it comes to perplexity and burstiness 31 
estimation, some research has shown that provenance techniques are not reliable metrics or indicators 32 
of human writing—especially in settings such as academic writing or with non-English languages. In 33 
many cases, the detection algorithm needs to keep track of specific features, which is computationally 34 
expensive and unrealistic to implement. Even with humans, each individual has their own writing style, 35 
and this can make it difficult to depend on a universal human writing style guide or feature set to 36 
support algorithmic detection. Finally, classifier-based methods generally target specific models by 37 
training on samples of their generated text or by utilizing the model itself, therefore their ability to 38 
classify new text from unknown models can be highly degraded. 39 

3.1.3.3. Audio 40 

The recent proliferation of AI-based synthetic audio has had great impact on applications such as voice 41 
assistants, text-to-speech, voice authentication, music, audiobooks, and podcasts. Meanwhile, synthetic 42 

https://arxiv.org/pdf/2310.00076.pdf
https://arxiv.org/pdf/2306.01953.pdf
https://arxiv.org/pdf/2312.07913v2.pdf
https://arxiv.org/abs/2301.10226
https://aclanthology.org/2023.emnlp-main.136/
https://aclanthology.org/2023.emnlp-main.136/
https://arxiv.org/abs/2304.04736
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2306.04723
https://arxiv.org/abs/2301.11305
https://huggingface.co/blog/Andyrasika/deepfake-detect
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voices created a new category of GAI models related to voice impersonation and synthetic audio 1 
recordings, raising concerns about the negative impact of audio deepfakes.  2 

Several watermarking algorithms for audio have been explored. Most fit into two categories: frequency 3 
domain and time domain methods. The former takes watermarks and embeds them into transform 4 
coefficients, which are inverted to robustly conceal a watermark within an audio file. Time domain 5 
methods—where watermarks are embedded by modifying host signal samples—are simpler, but can 6 
lack robustness. The main issues with existing techniques for audio watermarks are robustness and 7 
computational costs, especially when considering long-duration audio. There are also newer techniques 8 
for audio watermarking, including using a trained neural network, which adds covert perturbations to 9 
the original audio in order to produce the watermark. Metadata can be added to audio files when AI-10 
generated audio is created and can be cryptographically-secured—though as discussed in previous 11 
sections methods exist for manipulating embedded metadata.  12 

3.1.3.4. Video  13 

Risks regarding video authenticity have emerged as a public concern due to the rapid development of 14 
video generation tools. A digital video provides the appearance of movement across time. This makes 15 
digital video processing data intensive and requires significant bandwidth, processing power, and 16 
storage. 17 

The process of extracting and finding evidence from a video to confirm its authenticity or integrity is 18 
known as video forensics. Many theories and methods used in video forgery detection are borrowed 19 
from image forensics. Although it is possible to analyze a video frame by frame using image forensics 20 
techniques, there are two reasons why this approach is ineffective: videos are more computationally 21 
demanding than images, and image-based methods may not be reliable for uses such as frame 22 
replications or deletions in videos. 23 

Video tampering techniques generally can be divided into active and passive approaches. Watermarking 24 
and digital signatures are active techniques that verify content using features in the video. This data is 25 
then integrated into the video content at the moment of recording or capture and communicated to the 26 
receiver. However, tampering can occur before the digital signature or watermark is applied. On the 27 
other hand, with tamper-evident watermarks, in cases when the video is edited, this may suggest that 28 
the video has been manipulated. Another category of techniques actively enables devices (e.g., cameras, 29 
video recorders) to insert metadata information about the video source at the moment of capture. 30 
These are relatively new and not yet widely used, although they are expected to gain more attention in 31 
the near future. There are tradeoffs among watermark capacity, invisibility, and robustness. For 32 
example, increasing the capacity (i.e., embedding more information) requires altering more components 33 
in the host content which can compromise invisibility, while high robustness might require limiting the 34 
capacity to allow for more difficult to detect watermarks. On the other hand, increasing invisibility may 35 
require embedding watermarks in less obvious ways leading to potentially lower watermark robustness. 36 

Opportunities for Further Development: Further research is needed to: understand how 
watermarks and metadata recording techniques can be abused by adversarial actors across all 
modalities of content, determine if provenance data tracking techniques for audio such as robust 
watermarking can be adopted, inform sociotechnical evaluations for how disclosures on audio 
content can be designed, and on how to improve the application of these techniques broadly for 
text content. There should also be further research on the sociotechnical effects and the 

https://www.wsj.com/articles/i-cloned-myself-with-ai-she-fooled-my-bank-and-my-family-356bd1a3
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520#widm1520-bib-0086
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520#widm1520-bib-0086
https://www.nature.com/articles/s41598-023-45619-w.pdf
https://www.nature.com/articles/s41598-023-45619-w.pdf
https://www.nature.com/articles/s41598-023-45619-w.pdf
https://ieeexplore.ieee.org/document/
https://researchportal.northumbria.ac.uk/en/publications/digital-forensic-analysis-for-source-video-identification-a-surve
https://www.sciencedirect.com/science/article/abs/pii/S1742287618304146
https://www.researchgate.net/publication/355030746_Passive_Video_Forgery_Detection_Techniques_to_Detect_Copy_Move_Tampering_Through_Feature_Comparison_and_RANSAC
https://www.researchgate.net/publication/339410290_An_Ontology_of_Digital_Video_Forensics_Classification_Research_Gaps_Datasets
https://www.mdpi.com/2073-8994/12/11/1811
https://www.globenewswire.com/news-release/2023/10/24/2765978/0/en/Truepic-Unveils-Watershed-Gen-AI-Transparency-Directly-on-Devices-Powered-by-Snapdragon-Mobile-Platform.html
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effectiveness of labeling synthetic and authentic content, and any resulting impacts on the 
information environment. 

3.1.4. Synthetic Content Detection 1 

Synthetic content detection refers to techniques, methods, and tools used to classify whether a given 2 
piece of content or portion of content is synthetic or not. Synthetic content detection may rely on 3 
provenance information that was recorded, or it may look for other signals to help determine whether 4 
content has been generated or manipulated by AI. Reliable and robust methods for detecting synthetic 5 
content can mitigate and reduce harms and risks from the misuse of synthetic content when integrated 6 
within sound technical and social frameworks.  7 

Detection methods relying on humans require extensive labor and high costs due to the large volume of 8 
data and are often subject to variations depending on individuals’ lived experiences and expertise. The 9 
methods reflect a constant cat-and-mouse game between the detection and generation communities. 10 
As soon as a new detection method is created, models improve, and adversaries learn new ways to 11 
avoid detection. Furthermore, detectors are often tied to and may only perform well on specific 12 
generators.  13 

Various tools are available to classify and detect synthetic content. Most are designed to detect content 14 
modifications or distinguish between AI-generated and human-produced outputs, and many utilize 15 
machine-learning and deep-learning detection techniques.  16 

The DARPA Semantic Forensics (SemaFor) program takes a robust approach to detection by focusing and 17 
utilizing technologies that can detect, attribute, and characterize semantic inconsistencies in falsified 18 
multimodal media at scale. The DARPA SemaFor product also provides integrity scores to determine the 19 
probability that a piece of digital content is manipulated and also characterizes the “why,” or what the 20 
intent of the multimodal media content could be. 21 

Synthetic content detection techniques can broadly fit into three categories.  22 

Automated content-based detection techniques are applied to identify synthetic content after it has 23 
been generated. These can include several different types of classification techniques that are designed 24 
to identify and separate synthetically-generated image, text, audio, and video, from authentic content 25 
across these modalities. 26 

Provenance data detection techniques are used to identify digital watermarks (both overt and covert) 27 
embedded into synthetic content. (See earlier descriptions of provenance data detection.) Covert 28 
watermarks are machine-readable, while overt watermarks may be more difficult for detection 29 
algorithms to detect, given that they may not be machine-readable. Manipulations of digital content can 30 
also be traced utilizing metadata for synthetic content and deepfakes. 31 

Human-assisted detection refers to the human-in-the-loop methods used in the detection process. It 32 
involves the cooperation of AI tools, crowd workers or data workers who handle and label data, and 33 
domain experts to improve the accuracy, explainability, and robustness of synthetic content detection 34 
techniques. Human-in-the-loop methods can be used for a wide range of contexts, including to validate 35 
and assess detection model outputs, though the evolving sophistication of GAI models may change the 36 
effectiveness of human labels in discerning whether content is synthetic or not. Human-in-the-loop 37 

https://www.darpa.mil/program/semantic-forensics
https://openaccess.thecvf.com/content/CVPR2021W/WMF/html/Xiang_Forensic_Analysis_of_Video_Files_Using_Metadata_CVPRW_2021_paper.html
https://www.itic.org/policy/ITI_AIContentAuthorizationPolicy_122123.pdf
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methods may involve and augment content-based detection and provenance data detection 1 
methodologies above. 2 

3.1.4.1. Issues for Consideration for Detection Techniques across Mediums 3 

Issues for consideration for all detection techniques across modalities are summarized below.  4 

Generalizability and Practicality: Incorporating diverse data, using ensemble models, and enabling 5 
continual learning are important strategies for improving the generalizability of detectors in real-world 6 
scenarios. As the amount of data is larger, computation power for such detection models still needs to 7 
improve for practical operational environments. Understanding the computational complexity of 8 
detectors is important for optimizing their performance and suitability for real-world applications. 9 

Interpretability and explainability: Interpretability is crucial for synthetic content detection. Users must 10 
be able to form a coherent representation of the result that helps them understand how to act on it. 11 
(For example, they may need information about uncertainty.) In addition, it can be helpful for the results 12 
to be explainable so that end users are able to understand the mechanisms by which a model produced 13 
the decision. 14 

Reproducibility: When using original data, code, and analysis, it is important for independent 15 
researchers to produce the same or similar results as the original experiment or method. The trend 16 
towards reproducible results can be promoted by providing the public with comprehensive datasets, 17 
human scores/reasons, experimental setups, and open-source tools/codes. 18 

Comprehensive Data Inputs: There is a lack of benchmark datasets that can comprehensively evaluate 19 
existing detection technologies. These datasets should include real-world noises, diverse languages, 20 
compression, post-processing, and transmission methods. In addition, reusing synthetic content as input 21 
in subsequent model training can pose a challenge to detection technology. The accuracy and reliability 22 
of detectors can be improved by measuring the ambiguity of inputs and conducting further studies. 23 

Robustness to security, privacy, intellectual property, and bias: The risks of synthetic content raise 24 
concerns in various domains related to security, privacy, intellectual property, and bias. GAI models rely 25 
on vast amounts of individual data, including sensitive information, which can lead to data breaches and 26 
unauthorized access to personal information. Adequate measures addressing those risk factors and 27 
developing robust detectors for synthetic content can help improve content integrity. 28 

Incorporation of human-assisted techniques: Human collaborative decision-making is helpful in refining 29 
the task of synthetic content detection. For example, humans can help train and fine-tune detection AI 30 
models over time by providing feedback and correcting errors which can ultimately enhance the 31 
accuracy of their performance. 32 

The detection methods for different modalities of content described below include techniques that fall 33 
into these various categories. 34 

3.1.4.2. Synthetic Image Detection 35 

Synthetic image detection refers to the process of identifying images that have either been generated by 36 
AI or manipulated using generative models such as Generative Adversarial Networks (GANs),diffusion 37 
models including their text-to-image products, neural radiance fields (NeRFs), variational autoencoder 38 
(VAE), among others. Given the rapid advances in image synthesis technology, there is a need to detect 39 
manipulated visual content in various application domains to preserve information integrity. 40 

https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8367.pdf
https://arxiv.org/pdf/2302.12691.pdf
https://economictimes.indiatimes.com/news/how-to/ai-and-privacy-the-privacy-concerns-surrounding-ai-its-potential-impact-on-personal-data/articleshow/99738234.cms
https://economictimes.indiatimes.com/news/how-to/ai-and-privacy-the-privacy-concerns-surrounding-ai-its-potential-impact-on-personal-data/articleshow/99738234.cms
https://pubmed.ncbi.nlm.nih.gov/36422059/
https://arxiv.org/abs/2211.00680
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Synthetic Image Detection Techniques  1 

Detection challenges arise from the highly realistic visual quality of synthetic images, and also the 2 
complexity of evolving AI and manipulation techniques. Systems for detection must be continuously 3 
improved to accurately detect synthetic images generated by rapidly advancing models. There are 4 
different ways to categorize synthetic image detection methods. The forensic community has often used 5 
a twofold of an active and passive detection method for identifying between authentic and synthetic 6 
images. Active detection methods focus on detecting whether an image is authentic or not or if it is 7 
forged by analyzing information hidden in an image at the time of its capture, using techniques such as 8 
watermarking, digital signatures, and cryptography. Passive detection methods, on the other hand, do 9 
not rely on any additional information in the image. Instead, they aim to find traces left (e.g., image pixel 10 
regularities or inconsistencies, tampering operations) during the image processing phases. 11 

Recent studies in June 2020, February 2022, and May 2022 have focused on detecting deepfake images 12 
by using deep learning models, machine learning models, and statistical models. These methods 13 
describe some details in the Synthetic Video Detection Techniques below. 14 

Some other researchers employ the following techniques for synthetic image detection. 15 

Backbone models are pretrained networks that extract features from input images. These models 16 
comprise several layers of CNNs, including convolutional and pooling layers, and activation functions 17 
that are stacked to gradually minimize the spatial resolution of the input image while increasing their 18 
depth. These models can be used to differentiate between authentic and synthetic images. 19 

Fake face detectors train models on face images and use differences in frequency statistics or global 20 
image features to distinguish between authentic and synthetic face images. General synthetic image 21 
detectors use special designs to classify general images, removing the limitation of face content. 22 
Quality-based sampling detectors involve training detectors on realistic synthetic images selected based 23 
on their quality scores according to a probabilistic quality estimation model. The method can lead to 24 
higher detection performance across various concept classes, such as training a detector on human 25 
faces and testing on synthetic animal images, thereby enhancing the overall effectiveness of synthetic 26 
image detectors. Furthermore, a practical guide discussed how adding synthetic images to object 27 
detection models can greatly improve their performance, especially when combined with authentic 28 
images. Utilizing this can enhance the performance of synthetic image detection models.  29 

Manipulation Trace methods involve analyzing digital correction, overlapping, file format and structure 30 
analysis, metadata, and other enhancing effects to identify any inconsistencies or traces of 31 
manipulation. There are various traceable tools available such as Traces Extraction Network (AMTEN) 32 
and Manipulation Classification Network (MCNet) for detecting synthetic images. 33 

Reverse Image Search/Trace methods involve searching for GAI model fingerprints using reverse image 34 
search engines, which predict network architecture and loss functions from the estimated fingerprints of 35 
the model used for synthetic images. 36 

Synthetic Image Detection Performance 37 

The accuracy of synthetic image detectors varies depending on the specific tool and the type of 38 
synthetic images being analyzed. The popular metrics used for image and video detection performance 39 
include accuracy metrics, as well as a graphical analysis such as ROC (receiver operating characteristic) 40 
curve and area under the ROC curve (AUC). AUC is a performance measure used to evaluate the 41 
classification capability of a model, especially when addressing imbalanced data, and is widely used to 42 
evaluate various AI models. Detection performance for synthetic images remains high without post-43 

https://www.aiornot.com/blog/how-can-ai-generation-photos-can-harm-each-of-us#:~:text=Propagating%20False%20Narratives%3A%20Images%20generated,and%20eroding%20the%20media's%20credibility.
https://dl.acm.org/doi/pdf/10.1145/3633203
https://arxiv.org/abs/2001.00179
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9721302
https://link.springer.com/article/10.1007/s11263-022-01606-8
https://arxiv.org/abs/2306.08571
https://arxiv.org/abs/2306.08571
https://arxiv.org/abs/2306.08571
https://www.researchgate.net/publication/370227934_Improving_Synthetically_Generated_Image_Detection_in_Cross-Concept_Settings
https://blog.ml6.eu/using-synthetic-data-to-boost-the-performance-of-your-object-detection-model-351a7f2171e2
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10202583
https://arxiv.org/abs/2103.00484
https://www.mdpi.com/2313-433X/9/1/18
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processing (accuracy between 52% and 76%, AUC between 75% and 93%). When synthetic and 1 
authentic images are post-processed (e.g., compressed and resized), as is common on social media 2 
platforms, detection accuracy decreases (accuracy is between 50% and 62%, AUC between 53% and 3 
91%). The accuracy in this context indicates the proportion of true positives and true negatives among 4 
all evaluated detection cases. Experiments revealed that detecting a synthetic image by a specific 5 
generator is relatively straightforward. It can be achieved by training a binary classifier on a dataset 6 
comprising both authentic images and synthetic images created by that particular and only that 7 
generator, as the approach does not generalize well. Reported accuracy results on different training and 8 
test subsets using different methods range from 61% to 70%. Other performance measures 9 
demonstrate accuracy ranging from 50% to 62% and AUC from 52% to 91% with the post-processed 10 
images. This challenge is particularly prominent in real-world scenarios where the generator is often 11 
unknown during the training process, making it difficult to differentiate between authentic and synthetic 12 
images. 13 

Additional Issues for Consideration  14 

Robustness and Practicality: Synthetic data utilized for model training purposes, (which is distinct from 15 
synthetic content),used for detection may not fully capture the complexity and variability of authentic 16 
empirical data, which can limit the effectiveness of detection models trained on synthetic data. When 17 
detection models are trained on specific synthetic images they may not work well when applied to real-18 
world scenarios, and may not be reliable if the images present artifacts that are significantly different 19 
from those seen during training. Post-processing, such as compression or resizing, exacerbates this 20 
challenge. The computational intensity of the detection models still needs to improve for practical 21 
operational environments. See details about synthetic image detection datasets in the Appendix D. 22 

Societal Impact: In the application of synthetic image detection technologies, there may be wider 23 
societal implications and ethical considerations of the risks of synthetic content, and the design 24 
detection models to combat these risks. Some risks include impersonation, potential erosion of trust in 25 
institutions, synthetic CSAM and NCII, exacerbation of social divisions, threats to democracy and 26 
election integrity, and national security. When developing detection models, developers must consider 27 
these various risks and ensure that detection capabilities are built to detect harmful content that could 28 
have adverse societal effects and also work to improve detection accuracy for harmful images. 29 

3.1.4.3. Synthetic Video Detection  30 

Synthetic video refers to video manipulations, including deepfakes. A deepfake video is generated using 31 
machine learning or deep learning techniques to create realistic videos of real people in a malicious 32 
manner. Synthetic videos can also include manipulations to generate events that may not have ever 33 
occurred that could affect public safety, such as a false terror attacks or false natural disasters, or even 34 
fictional videos that are benign but do not reflect reality.  35 

Adversaries can use available video manipulation tools for malicious impersonation, enabling fraud, 36 
creating misinformation and disinformation, and likely posing risks to democratic systems. Detecting 37 
deepfakes is becoming increasingly challenging due to their realistic nature and their rapid proliferation, 38 
leading to an “arms race” to develop new detection methods. Deepfakes generation may be categorized 39 
as involving: identity swap, attribute manipulation, expression swap, entire face synthesis, and source 40 
video. 41 

 42 

https://arxiv.org/abs/2211.00680
https://arxiv.org/abs/2306.08571
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https://media.defense.gov/2023/Sep/12/2003298925/-1/-1/0/CSI-DEEPFAKE-THREATS.PDF
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https://www.researchgate.net/profile/Md-Fahimuzzman-Sohan/publication/374142887_A_survey_on_deepfake_video_detection_datasets/links/650f9297c05e6d1b1c2af258/A-survey-on-deepfake-video-detection-datasets.pdf
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Identity swap (or face 
swap)  

is a method of replacing the face of a person in the target video with the 
face of another person in the source video. 

Expression swap (or 
puppet master) 

is a method of replacing the features of the mouth in the source image 
and producing a new face with the same identity but a different 
expression. 

Attribute manipulation 
(face editing / retouching) 

 is a method of modifying some facial attributes (e.g., color of hair or 
skin, gender, age, adding glasses). 

Entire face synthesis is a method of generating a non-existing face or object. 

Source video is a method of analyzing the content of a source video to understand 
relevant attributes such as facial expressions and body language. The 
method then maps a voice recording to the video, making it appear as 
though the person in the video is speaking the words in the recording.  

Synthetic Video Detection Techniques 1 

Recent studies in June 2020, February 2022, and May 2022 have focused on detecting deepfake or 2 
manipulated videos by using deep learning models, machine learning models, and statistical models. 3 

Deep Learning 
(DL) detectors 

 

identify specific artifacts produced by their generation models. These models can 
extract or learn visual artifacts and features directly from the video frames. These 
features may include handcrafted features, spatio-temporal features, face 
landmarks, biological signal clues, among others, which help identify 
inconsistencies that may indicate the presence of a deepfake or manipulated 
video. 

Machine Learning 
(ML) detectors 

 

utilize feature selection algorithms to generate a feature vector, which is then 
used this vector as input to train a classifier to detect manipulations or deepfake 
videos.  

Statistical-based utilize different statistical measures, such as examining the shortest paths, photo 
response non-uniformity (PRNU) or mean normalized cross-correlation scores to 
distinguish between authentic and synthetic videos. Popular methods are 
Expectation-Maximization (EM) to extract a set of local features, Total Variational 
(TV) distance, Earth Mover's (EM) distance, Kullback-Leibler (KL) divergence, and 
Jensen-Shannon (JS) divergence, among others. 

Forensics-based detectors utilize the differences in frame-level features such as noise patterns or 
motion features. File structural analysis can be leveraged to determine the 
originality of a file employing unique device or GAI model characteristics  

https://arxiv.org/abs/2001.00179
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9721302
https://link.springer.com/article/10.1007/s11263-022-01606-8
https://www.researchgate.net/publication/329814168_Detection_of_Deepfake_Video_Manipulation
https://www.researchgate.net/publication/329814168_Detection_of_Deepfake_Video_Manipulation
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Spatial-based detectors leverage the power of DNN models to capture the subtle differences or 
artifact clues between authentic and synthetic from the spatial or spatio-
temporal domain.  

Frequency-based detectors investigate the differences or frequency artifacts between authentic 
and synthetic from the frequency domain.  

 1 

Synthetic Video Detection Performance 2 

Similar to image detection, the accuracy of synthetic video detectors varies depending on the specific 3 
method and the type of synthetic video. The performance is not robust to post-processing operations 4 
like compression, noisy effects, visible artifacts, among others. Although various studies show different 5 
performance results for synthetic video detectors, performance measures of deepfake detectors have 6 
shown for accuracy ranging from 62% to 99% and AUC from 82% to 98%. See details about synthetic 7 
video detection methods/results and datasets in Appendix D.  8 

Additional Issues for Consideration 9 

Generalizability: in general, synthetic video detection methods are trained for a certain data and 10 
compression level and demonstrate low generalization to unobserved datasets and scenarios, resulting 11 
in significant performance degradation. 12 

Robustness: When dealing with low-quality videos, such as high levels of noise, low compression rates, 13 
or resizing, detection methods tend to perform lower when compared to high-quality videos. Adding a 14 
noise layer to the detection network that can account for different types of data degradation may 15 
improve system’s robustness. 16 

Computational cost: Processing time has become a critical factor due to the high volume of videos and 17 
media platforms for streaming. Future research should include how to develop efficient video detection 18 
techniques. 19 

Benchmark and societal impact: there is a lack of standardized experimental methods that can facilitate 20 
meaningful comparisons among diverse datasets, scalability, and reliability of various detection 21 
methods. Additionally, there is a dearth of systematic or quantitative research on the perceptual and 22 
societal impact components that contribute to the deceptive nature of synthetic videos. 23 

3.1.4.4. Synthetic Text Detection 24 

The advancement of large language model (LLM) capabilities has made it difficult for humans to discern 25 
AI-generated text from human-written text, underlining a need for transparency about the use of LLMs 26 
in various contexts. LLMs are known for producing inaccurate or false outputs which have been called 27 
“hallucinations” or “confabulations,” and they also can be used to generate false and/or misleading 28 
information at scale. For these reasons, being able to detect LLM-generated content is important to 29 
increase digital content transparency.  30 

Synthetic text detectors use parameters based on text features such as language, structure, perplexity, 31 
and burstiness. Perplexity measures how well the model is able to predict the next word in a sequence 32 
of words. Burstiness measures how predictable a piece of content is by the uniformity of sentence 33 
length and structure. Some detectors rely on language models similar to those used in AI writing tools to 34 

https://ijeecs.iaescore.com/index.php/IJEECS/article/view/33572
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/33572
https://telblog.unic.ac.cy/2023/04/11/perplexity-and-burstiness-in-ai-and-human-writing-two-important-concepts/
https://telblog.unic.ac.cy/2023/04/11/perplexity-and-burstiness-in-ai-and-human-writing-two-important-concepts/
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evaluate the predictability and language patterns of the text. These content detectors are being used by 1 
some educators to check students' writing, by businesses to ensure the originality of published content, 2 
and by individuals to verify the authenticity of text on the Internet. Other detectors rely on factual 3 
inconsistencies (e.g., fact-checking database and reasoning models) and metadata analysis (e.g., 4 
anomalies detection in content metadata such as timestamps, location, and author information). It 5 
should be noted that the efficacy of many detection tools like these is being debated. 6 

Synthetic Text Detection Techniques  7 

Techniques shown in the Appendix D can be classified into the categories described as follows:  8 

Watermarking 
detectors 

have two components: embedding and detection. Embedding inserts a 
watermarked text (e.g., a hidden signal or pattern) into the output of the LLMs, 
which assists with provenance data tracking, while detection identifies the 
watermark from the AI-generated text.  

Zero-shot 
detectors  

detect AI-generated text with no need for prior training on labeled data or fine-
tuning samples. The technique uses distinctive features and statistics (e.g., 
grammatical analyses, word density, structural attributes, constituent length, 
inconsistencies) as key indicators in distinguishing AI-generated text from human-
generated text.  

Fine-tuning LM 
detectors 

use a fine-tuned Language Model (LM) method in detecting LLM-generated text. 
This involves taking a pre-trained LM model and adapting it to a more specific 
dataset or task at hand. It optimizes specific sub-components of the model with a 
loss function to detect errors or inconsistencies in text. Most approaches require 
paired samples for supervised training processes. 

LLMs as 
detectors 

use Instruction Tuning of LLMs for document and sentence text detection, enabling 
LLMs to detect generated text by leveraging their pre-training knowledge. The 
method involves cross-examining one LLM with another to discriminate text 
generated by either themselves or other LLMs, leveraging fluency and errors in the 
text.  

Adversarial 
learning 
detectors 

differentiate between human- and LLM-generated text by exposing them to 
adversarial examples, thus improving their accuracy. This involves the 
configuration of an attack model alongside a detection model, with the iterative 
confrontation between the two culminating in enhanced detection.  

Human-assisted 
detectors 

leverage both human and machine discrimination capabilities to efficiently 
distinguish between human- and LLM-generated text, utilizing human prior 
knowledge and analytical skills as well as learning from the model’s behavior.  

 9 

Synthetic Text Detection Performance 10 

https://www.scribbr.com/ai-tools/how-do-ai-detectors-work/
https://arxiv.org/pdf/2310.14724.pdf
https://arxiv.org/pdf/2306.04634.pdf
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A variety of metrics are used to measure the performance of synthetic text detectors depending upon 1 
their use in different scenarios. Detection performance varies depending on the methods and datasets 2 
used. Watermarking technology has significantly advanced in recent years and can now frequently label 3 
and identify text generated by language models. Zero-shot detectors can enhance detection accuracy, 4 
and some LLM-based detectors are capable of exhibiting superior detection performance, robustness, 5 
and resilience to various attacks. Fine-tuning language models often tends to overfit their training data 6 
or the source model's training distribution, leading to a decline in performance when dealing with cross-7 
domain or unseen data. Moreover, language model-based detectors are limited in handling data 8 
generated by different models since the detectors are fine-tuned on specific datasets for a given task. 9 
Human-assist annotators can improve their performance over time but have limitations with handling 10 
large volumes of data. 11 

Overall, detection performance significantly decreases with various attacks such as paraphrase attacks, 12 
adversarial attacks, prompt attacks, and due to data ambiguity. While some initial research has shown 13 
that retrieval-based detection methods could increase the robustness of AI-generated text detection 14 
against paraphrase attacks, further research is needed to defend against different kinds of attacks. In 15 
addition, it is essential to conduct benchmark studies in diverse testing scenarios. Rigorous testing and 16 
evaluation can improve understanding of detectors’ capabilities and limitations and aid in developing 17 
more effective strategies for identifying LLM-generated text. The existing detection methods for text are 18 
a work in progress and need further evaluation and improvement to align claims of high performance 19 
with actual robustness, reliability, and generalizability. 20 

Additional Issues for Consideration  21 

Robustness and Detection Quality: Robustness and detection quality are current issues for synthetic 22 
text detection. Most detectors have been designed for English-language text, and there is a need to 23 
optimize their performance across various languages. The performance of detectors decreases in real-24 
world scenarios, highlighting the need to improve their robustness for practical applications. The quality 25 
of LLM-generated text is also affected by the complexity or learning of the prompts used, which can 26 
make it difficult for detectors to accurately identify text generated via elaborate prompts. This also 27 
makes it challenging for evaluators to measure detector performance.  28 

Some detectors identify AI-generated text by analyzing parameters such as word occurrence, 29 
positioning, frequency, and style. However, they may not be able to distinguish between different types 30 
of GAI models. Additionally, there is a limit to the range and diversity of benchmark datasets that can be 31 
used to comprehensively evaluate existing AI-generated text detection technologies; see details in the 32 
Appendix D. 33 

High-risk applications: Socio-technical issues for consideration include the usage of immature text 34 
detection techniques in high-risk applications. These applications may be included in academic settings 35 
or in the detection of AI-generated misinformation and disinformation. When detectors have been used 36 
in academic settings to confirm the academic integrity of writing, given a lack of accuracy, students have 37 
been wrongfully accused of cheating with AI technology, putting their academic futures at risk. False 38 
positives with AI-based text detectors have been reported as a clear issue with dangerous 39 
consequences. Similarly, text detectors can be inaccurate and imperfect tools for determining whether 40 
content is synthetic or not as well as determining whether misinformation and/or disinformation 41 
narratives may be AI-generated. This is especially problematic in non-English languages, as most 42 
detectors have been designed for English-language applications. Language model sophistication is also 43 

https://arxiv.org/abs/2310.14724
https://arxiv.org/pdf/2310.15654.pdf
https://arxiv.org/pdf/2310.15654.pdf
https://arxiv.org/pdf/2310.15654.pdf
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2310.14724
https://www.rollingstone.com/culture/culture-features/student-accused-ai-cheating-turnitin-1234747351/
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rapidly increasing, making detection a bigger challenge. Moreover, some research shows that using 1 
some of these detectors may not be appropriate in various scenarios.  2 

3.1.4.5. Synthetic Audio Detection 3 

As the quality of synthetic voice generation advances, the challenges and complexities of detection are 4 
increasing. There are two types of synthetic audio fields: Text-to-speech (TTS)-based and imitation-5 
based. 6 

The TTS-based method transforms text into natural speech in real-time via two steps. First, clean and 7 
structured raw audio is collected, along with a text transcript of the audio. Second, the TTS model is 8 
trained using the collected data to build a synthetic audio-generation model.  9 

The imitation-based method transforms source speech (secret audio) so that it sounds like another 10 
speech (target audio) without changing the linguistic content. Its primary purpose is of the secret audio. 11 
To replicate the attributes of a specific voice, the style, intonation, or prosody of the spoken signal may 12 
be adjusted. This can be useful for applications such as voice impersonation. 13 

In addition to traditional audio generation methods, some generation techniques exhibit voice 14 
fingerprint artifacts and inconsistencies that can be captured through frequency domain analysis over a 15 
spectrogram. Mel Frequency Cepstral Coefficients (MFCCs) are commonly used in speech-processing 16 
techniques. Using MFCCs has been shown to produce better results for synthetic audio detection than 17 
directly feeding the raw audio signal into the model. 18 

Synthetic Audio Detection Techniques  19 

Detection techniques can be divided into the following ML and DL methods. DL is considered a subset of 20 
ML that uses multi-layered neural networks to enable machines to learn more complex representations 21 
of data in a human-like way. : 22 

ML detectors  involves identifying speech patterns or detecting anomalies in features that 
deviate from natural speech characteristics such as acoustic and spectral 
content, pronunciation errors, formant frequencies, pitch variations, and 
background noise and inconsistencies. The method is limited by scalability with 
large numbers of audio files due to excessive training and manual feature 
extraction which requires extensive labor to prepare the data. 

DL detectors leverages features such as formant frequencies, pitch variations, and tone 
nuances to identify discrepancies that distinguish a synthetic voice. The method 
can use metadata and background noise patterns to differentiate between 
authentic and synthetic voices and it requires specific transformations (e.g., 
audio features such as spectrograms) on the audio files when DL algorithms 
were used. 

See additional details about synthetic audio detection methods and datasets in the Appendix D.  23 

Synthetic Audio Detection Performance 24 

The performance of synthetic audio detectors varies depending on the specific detection methods, the 25 
type of datasets, and the audio preprocessing techniques used.  26 

https://www.washingtonpost.com/technology/2023/08/14/prove-false-positive-ai-detection-turnitin-gptzero/
https://arxiv.org/pdf/2303.11156.pdf
https://www.mdpi.com/1999-4893/15/5/155
https://www.mdpi.com/1999-4893/15/5/155
https://www.mdpi.com/2076-3417/9/19/4050
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520
https://link.springer.com/chapter/10.1007/978-3-540-30543-9_71
https://www.mdpi.com/1999-4893/15/5/155
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Performance measures for synthetic audio detection have been conducted based on three criteria, 1 
equal error rate (EER), Tandem Decision Cost Function (t-DCF), and accuracy. EER is the point at where 2 
the false positive rate and false negative rate are equal and t-DCF measures the reliability of decisions 3 
made by the detectors. EER for audio ranges from 0.43% to 42.5%, with t-DCF from 0.008 to 0.39, and 4 
accuracy from 50% to 99%. The methods employed to generate synthetic audio data can impact the 5 
performance of the detection methods. For instance, one of the methods that has a very low error rate 6 
compared to other methods when applied to TTS-based datasets, performs poorly when applied to 7 
imitation-based datasets.  8 

In general, ML-based detection methods provide better explanations and interpretations of the 9 
detection results while DL-based detection methods such as Convolutional Neural Networks (CNN) are 10 
considered more stable and consistent than the ML-based detection methods with respect to the 11 
dataset and synthetic data type. 12 

Additional Issues for Consideration  13 

Non-English Language Coverage: Most current research is focused on developing detection methods for 14 
identifying synthetic voices speaking in English. A detection model developed for a specific language 15 
may not perform equally well for other languages or dialects, especially for languages or dialects that 16 
have limited available data. Most detection methods focus solely on identifying synthetic audio, without 17 
accounting for accents or dialects. A lack of language coverage for audio detection could increase 18 
disparities in other parts of the world such as the Global South, especially around election periods, and 19 
could result in the amplification of harmful audio deepfakes in non-English languages.  20 

Detection in Real-World Scenarios: Due to the wide range of synthetic speech generation technologies, 21 
it is still difficult to recognize some families of synthetic voice tracks in an open-set situation. The open-22 
set scenario refers to detecting a synthetic voice even if it was generated using a previously unseen 23 
model.  24 

Opportunities for Further Development for All Detection Techniques: Existing detectors primarily 
emphasize discriminating between synthetic content and human-produced content. Intent 
detection and characterization is a connected issue where there needs to be more research as the 
detection and characterization of the intention behind manipulated or synthetic content can 
greatly influence individual opinions or behaviors and widely affect the misinformation and 
disinformation spaces. While the DARPA SemaFor program has made some progress in addressing 
this challenge, there is still room for improvement in the widespread development and adoption of 
semantic intent detection technologies. Further research should also include investigating how to 
effectively improve detection performance on synthetic content that was post-processed or 
corrupted by noise, transmission, compression, or reformatted by a different social media platform. 
Specifically for audio detection, future research should also investigate what occurs if voice 
recordings are corrupted by noise, coding, or transmission problems, as well as synthetic voice 
recordings posted on social media sites or utilized live during phone calls. Lastly, more research is 
likely needed to assess the effectiveness of human-assisted techniques to aid detection efforts, 
such as in determining the effectiveness of human labels.  

https://www.mdpi.com/1999-4893/15
https://www.mdpi.com/1999-4893/15/5/155
https://arxiv.org/pdf/2209.07180.pdf
https://arxiv.org/pdf/2209.07180.pdf
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520
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4. Testing and Evaluating Provenance Data Tracking and Synthetic Content Detection Techniques 1 

Measuring the effectiveness of provenance data tracking and synthetic content detection techniques 2 
through testing and evaluation can identify issues with digital content transparency techniques.  3 

A test is “an activity in which a system or component is executed under specified conditions, the results 4 
are observed or recorded, and an evaluation is made of some aspect of the system or component.”  5 

An evaluation is (1) “a systematic determination of the extent to which an entity meets its specified 6 
criteria; (2) action that assesses the value of something.” 7 

The testing and evaluation of digital transparency techniques described in this section focus on the 8 
testing and evaluation of provenance data tracking and synthetic content detection techniques. It is 9 
common practice to measure the loss in quality from system output accuracy of a system (using a loss 10 
function) during training. Many loss functions and metrics for training overlap with metrics and models 11 
for evaluation. While much of the testing and evaluation is automated, there is some testing that 12 
involves human or manual examination of results, especially in contexts where subject matter expertise 13 
is important. See Appendix E for more details.  14 

 Testing and Evaluating Provenance Data Tracking Techniques 15 

4.1.1. Testing and Evaluating Digital Watermarking Techniques 16 

Digital watermarks are typically tested by attacking and measuring their resilience. Different kinds of 17 
attacks include removal attacks (i.e., removing the watermark without breaking the encryption or 18 
security); distorting watermarks to fool a detector; cracking security measures to remove the 19 
watermark, and forging watermarks.  20 

Different ways to construct experiments and measure the robustness of watermarks include 21 
experiments running a set of attacks and measuring the percentage of attacks that destroy watermarks 22 
or percentage of the watermarks not detected. Another approach is to use image quality metrics to 23 
compare the image similarities between and among an original unwatermarked image, a watermarked 24 
image, and an attacked/changed watermark image. This experimental approach checks to see if the 25 
images are similar after a benign change (such as a decompression) yet are dissimilar if the watermark is 26 
attacked. Another experiment design uses image distance metrics to compare the distance or difference 27 
between watermarked images to their benignly-changed images, similar to digital fingerprinting 28 
experiments; a threshold distance is then set to identify which images are considered to be different. 29 

Image similarity metrics more specific to watermarking include hiding capacity (HC), the number of bits 30 
that can be hidden in an image; Peak Signal to Noise Ratio (PSNR); and Structural Similarity Index 31 
Measure (SSIM), and generic image similarity metrics and image distance metrics (including the L_2 32 
norm) are sometimes used. Another metric related to watermarking is the bits per pixel in an image, 33 
which determines how much information can be embedded in the image as a tradeoff to security of the 34 
watermark. 35 

4.1.2. Testing and Evaluating Metadata Recording Techniques 36 

One way to record metadata securely is through attaching it to a digital fingerprint of the digital 37 
content; the digital fingerprint is commonly achieved via hashing, as described earlier. The concept is 38 

https://docs.google.com/spreadsheets/d/e/2PACX-1vTRBYglcOtgaMrdF11aFxfEY3EmB31zslYI4q2_7ZZ8z_1lKm7OHtF0t4xIsckuogNZ3hRZAaDQuv_K/pubhtml
https://aiverifyfoundation.sg/downloads/Cataloguing_LLM_Evaluations.pdf
https://ieeexplore.ieee.org/document/940053
https://www.researchgate.net/publication/228800239_A_public_automated_web-based_evaluation_service_for_watermarking_schemes_StirMark_Benchmark
https://www.researchgate.net/publication/228800239_A_public_automated_web-based_evaluation_service_for_watermarking_schemes_StirMark_Benchmark
https://www.sciencedirect.com/science/article/abs/pii/S0165168401000391
https://www.sciencedirect.com/science/article/abs/pii/S0165168401000391
https://link.springer.com/article/10.1007/s11042-018-5799-6
https://ieeexplore.ieee.org/document/10113036
https://link.springer.com/article/10.1007/s11042-018-5799-6
https://dl.acm.org/doi/pdf/10.1145/3640466
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that different images should have different hashes (and not collide), yet two copies of the same image 1 
should have the same hashes.  2 

In addition, work is being conducted on the human testing and verification of metadata. One method is 3 
for humans to check the provenance directly for accuracy, verifying a subset of the provenance data by 4 
hand. Statistical tests on the provenance of the entire dataset used in training can complement human 5 
verification. For example, a query can determine what fraction of each data sample has a particular 6 
attribute. Provenance-generating software (or software that automatically generates metadata) can be 7 
tested for functional correctness by verifying that certain automatically generated queries regarding the 8 
provenance metadata return expected results. Provenance can also be evaluated by running 9 
provenance generating models on a known use case and manually examining what is generated. 10 

 Testing and Evaluating Synthetic Content Detection Techniques 11 

Testing and evaluating synthetic content detectors can help build trust in those systems. The most 12 
common way to measure and evaluate a synthetic content detection system (or discriminator) is to 13 
construct an evaluation dataset that has appropriately label human-generated (authentic) inputs (e.g., 14 
images, videos) and synthetic inputs. The detector is queried to detect which images are synthetic; in 15 
this experiment, the detector will give a real number for each input indicating how likely the input is 16 
synthetic, with a higher number indicating that the input is synthetic. Then, this output mirrors the 17 
experiment discussed in Appendix E of this report and is scored on an accuracy metric. For detection 18 
tasks, two particular metrics are the Area Under the Receiver Operator Curve (AUC) and the Detection 19 
Error Tradeoff (DET) curve. This experiment design can be used to test all of the different types of 20 
synthetic content detection techniques. 21 

4.2.1. Testing and Evaluating Automated Content-Based Detection Techniques 22 

Detection testing requires careful consideration of the training and evaluation data sets used in 23 
designing the test. It is important to balance the types and relevance of authentic and synthetic content 24 
to be tested, as well as the sources of inputs. Systems should be tested for their performance in 25 
detecting images when they are resized and compressed. For images, the size of the images as well as 26 
the size of the image regions tampered with are important considerations when evaluation data sets are 27 
constructed. 28 

When designing these detection test experiments, there are particular considerations as to how people 29 
testing synthetic content detectors construct the training set and the evaluation set (the set of inputs 30 
the detector is asked to determine which are authentic and which are synthetic). These concerns include 31 
a balance of classes and a variety of different relevant situations that are context-dependent, so that the 32 
dataset used is a balanced representation of the situation. As a result, evaluation datasets are often 33 
custom-constructed for detection experiments, and multiple evaluation datasets may be used to 34 
evaluate a detector. One consideration is testing detectors when the training and test sets are from the 35 
same pool of inputs, and when the training and test sets are from different pools of inputs. Another 36 
consideration is constructing data that tests image detectors to check that the detectors are robust to 37 
images when they are post-processed such as resizing and compression. For images, the size of the 38 
images as well as the size of the image regions tampered are an important consideration used when 39 
making evaluation data sets. 40 

For video content detectors have been tested in situations where the video had frames inserted, 41 
deleted, or duplicated. For copy-paste detection (objects are copied and pasted within specific frames, 42 

https://www.researchgate.net/publication/355769851_A_review_of_hashing_based_image_authentication_techniques
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.22683
https://www.cs.cmu.edu/~sherryw/assets/pubs/2023-data-provenance.pdf
https://dl.acm.org/doi/abs/10.1145/3564121.3564801
https://arxiv.org/abs/2002.11000
https://www.cambridge.org/core/books/evaluating-learning-algorithms/3CB22D16AB609D1770C24CA2CB5A11BF
https://www.sciencedirect.com/science/article/abs/pii/S0031320396001422
https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf
https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf
https://link.springer.com/chapter/10.1007/978-3-030-87664-7_9
https://doi.org/10.3390/ijgi9040254
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which are intra-frame forgeries), the accuracies of various detectors ranged from 54.9% to 99.3% 1 
depending on the system and the complexity of the forgery. For detecting inter-frame forgeries with 2 
insertions, duplications, and deletions of frames, the accuracies ranged from 57.9% to 99.3% depending 3 
on the system, the number of frames inserted/deleted/duplicated, and the complexity of the forgery. 4 
Another design involves constructing the evaluation dataset to have images produced from specific 5 
attacks to fool the detector.  6 

4.2.2. Testing and Evaluating Provenance Detection Techniques 7 

Watermarking detectors can be tested in a fashion similar to testing post-hoc detectors: A watermark 8 
detector is given watermarked images and non-watermarked images and is asked to detect the 9 
watermarks. Here is an example of such an experiment testing watermarking detector.  10 

Specific to watermarking detection, rather than using an accuracy metric, a different experiment can be 11 
designed where the watermark detector is given a set of inputs and is asked to obtain the watermark. 12 
The watermarked image obtained is then measured by its pixel correlation to the original watermark. In 13 
another experiment where the watermarks are statistical, synthetic images are generated, and the bit 14 
error rate of the watermark detector is measured and compared to theoretical optimums. 15 

One way to evaluate metadata detection techniques is to take authentic media with authentic metadata 16 
and then inject false metadata onto the media content. The metadata detector is then tested on 17 
whether it can spot the false metadata. 18 

4.2.3. Testing and Evaluating Human-Assisted Detection Techniques 19 

Human-assisted detectors can be tested in a variety of ways; how the detector is tested depends on the 20 
form of assistance. One kind of human-assisted detector is an automated detector that is assisted by 21 
human-annotated training data. In this case, it is possible to compare the correctness accuracy of the 22 
system trained on the human-annotated data to the system trained on the unannotated data. For 23 
human-assisted text detection, one source augmented the training of large language models with 24 
human-annotated descriptions of different text errors within LLM-generated text, though this was not 25 
used to differentiate LLM-generated and authentic text.  26 

Another kind of human-assisted detector is where the human is assisted with an automated model 27 
(through a user interface), but the human makes the final decision. For these tasks, the evaluation 28 
measures the human output. The human is measured by the time taken to complete the tasks and a 29 
subjective difficulty rating. The different interfaces, models can be swapped with other models to 30 
compare the influence of different machine assistance. This strategy is used to evaluate other human-31 
assisted software.  32 

 Additional Issues for Consideration 33 

Scope: The variety of mainstream testing only tests for Validity & Reliability (accuracy), Safe, and Secure 34 
& Resilient. As discussed in the NIST AI Risk Management Framework, there are additional trustworthy 35 
characteristics including Fair - With Harmful Bias Managed, Privacy-Enhanced, Explainable & 36 
Interpretable, and Accountable & Transparent. Many harms can arise when software is used but not 37 
checked in these areas.  38 

Context: These systems are tested in experiments that are sometimes isolated from context. For 39 
instance, in what use cases is an AUC of 0.95 effective and in what use cases is this number bad? When 40 

https://ieeexplore.ieee.org/abstract/document/8050596
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will an improvement in AUC score actually reduce the harms of bias, discrimination, fairness, and other 1 
issues? As the system’s output is rarely the final decision, there is an entire scenario and context 2 
involving humans where inaccuracies of a system might have different impacts depending on how the 3 
humans use the system output when making decisions. Lastly, as software is used by humans in 4 
different contexts, the context and other non-technical concerns shape the impact of the accuracy of 5 
the system, for example if a system’s outputs are used in high-risk use cases such as for employment, or 6 
utilized in battlefield environments, high accuracy across different metrics may be more important. 7 

Quality: A third concern comes from the testing of attacks and defenses. As many evaluations measure 8 
the quality of techniques with an attack-and-defense style, there is a concern that the quality of 9 
defenses is indirectly measured by the quality of attacks. Consequently, there have been instances 10 
where defenses tested to be good by one series of attacks were broken by other attacks. As attacks get 11 
better and adapt to current defenses, new defenses may then be developed as they adapt to these 12 
newer attacks. This reflects the commonly-known cat and mouse game that can occur between 13 
attackers and defenders, particularly in the realm of detection techniques. Defense-in-depth strategies 14 
may be needed, where multiple approaches are applied depending on use case, with various security 15 
mechanisms in place to reduce the unauthorized access of watermarks or metadata, for example. 16 
Though some of these tests are being done, there is still a gap with the attacks that exist and the attacks 17 
that mainstream tests often cover.  18 

Opportunities for Further Development: More socio-technical research and evaluations to 
understand how people interact with digital content transparency approaches across various types 
of systems and in varied environments across the Internet will be helpful to design and implement 
techniques effectively. There have been some initial studies done on how humans interpret 
provenance labels attached to content and how labels may affect the perception of content, such 
as research done on how disclosures that news media was AI-generated may affect perception of 
trustworthiness (and reduce trust in news), and another study on how provenance-enabled media 
is contingent on design choices, and how users may have difficulty in understanding provenance 
labels on content. More studies would be helpful to understand how various content 
authentication techniques can affect how people across various demographics interpret digital 
content, current societal disparities that may affect the adoption of provenance data tracking 
approaches, how provenance labels may affect (if at all) victims and survivors of synthetic CSAM 
and NCII content, and much more. The evaluations space for digital content transparency 
techniques in their application to synthetic content is relatively new, though applications of 
cryptography, authentication, provenance, and labeling concepts have been applied across 
different applications and use cases. A socio-technical perspective for evaluations, evaluating the 
human-centered design of approaches and how these techniques are affecting people is valuable to 
ensure that these techniques are being designed and implemented to improve digital content 
transparency for all. 

 19 
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5. Preventing and Reducing Harms from Synthetic Child Sexual Abuse Material and Non-Consensual 1 
Intimate Imagery  2 

Child sexual abuse material (CSAM) and non-consensual intimate images (NCII) are not new forms of 3 
technology-facilitated abuse, but GAI tools allow for novel, and direct ways to create this content at 4 
scale causing new and growing harm to victims and survivors, both minors and adults—often with 5 
relative ease, and requiring few technical skills. It has been documented that some AI models have been 6 
trained on datasets containing confirmed, real CSAM. Various open-source tools developed by malicious 7 
actors—such as face and body swap apps and websites to build image generation models commonly 8 
trained on non-consensual intimate images—are expanding on the Internet and resulting in sextortion, 9 
monetization schemes, and/or the targeting and abuse of women, girls, and minors (in addition to the 10 
common use of NCII to stalk, harass, and humiliate victims, including by abusive partners). Editing tools, 11 
in which authentic images can be uploaded and subsequently manipulated with AI, are another way in 12 
which synthetic CSAM and NCII are proliferated online. The likenesses of political and public figures have 13 
been manipulated and generated using AI tools to create non-consensual intimate imagery, 14 
disproportionately targeting women and affecting the civic and political participation of women and the 15 
health of democracies. Lastly, the misuse of generative AI tools increases victim identification, re-16 
victimization, and prevention issues for practitioners in this space. Victim identification is more difficult 17 
with photorealistic synthetic CSAM being distributed at scale, the distribution of this content 18 
exacerbates victim trauma, and prevention is difficult when known CSAM is in AI model training data. 19 
This is a major socio-technical challenge, with implications for democracy and individuals’ safety.  20 

 Current Technical Mitigations to Prevent and Reduce Harms from Synthetic CSAM and NCII 21 

5.1.1. Training Data Filtering 22 

As noted above, the ability of GAI models to generate CSAM or NCII is made more likely by images 23 
included in its training data which can result in harmful outputs as a result of human prompts. 24 
Crowdsourcing data labeling often introduces biases and inaccuracies in human labels. Biases around 25 
children could also affect dataset labels. For example, a study shows that most adults view Black girls 26 
between the ages of 5-14 as more adult-like than their white peers. It is important to note that 27 
removing CSAM from training data can be uniquely difficult as effectively filtering and removing all 28 
harmful data from the training data is challenging when the data is scraped systematically from the 29 
Internet, and also given that it is generally illegal for entities to possess CSAM, with a few exceptions 30 
respective of the right legal protocols in place for reporting. Neither human review nor automated filters 31 
or a combination of the two are effective enough to classify and capture all harmful and illegal content, 32 
including known CSAM. One example is the LAION-5B dataset that was confirmed to contain CSAM and 33 
was assembled from Common Crawl data, an open repository.  34 

Filtering too little data allows the model to be trained on harmful content, but filtering too much could 35 
affect the quality of the model’s outputs and reduce its sophistication or quality of outputs. Filtering 36 
training data to prevent unsafe outputs and designing various safety classifiers to clean up datasets 37 
before conducting model training can be useful. 38 

Designing filters for training data could involve training ML-based classifiers using images of known and 39 
vetted CSAM and NCII content (safety classifiers) and any other generally sexually explicit content, 40 
testing this classifier on large datasets to determine precision and recall rates, and then using the 41 
classifier to identify harmful content in training data, which could then be removed prior to model 42 

https://public-assets.graphika.com/reports/graphika-report-a-revealing-picture.pdf
https://www.justice.gov/usao-sdin/pr/fbi-and-partners-issue-national-public-safety-alert-sextortion-schemes
https://www.state.gov/gendered-disinformation-tactics-themes-and-trends-by-foreign-malign-actors/
https://arstechnica.com/tech-policy/2024/01/fake-ai-taylor-swift-images-flood-x-amid-calls-to-criminalize-deepfake-porn/
https://haas.berkeley.edu/wp-content/uploads/UCB_Playbook_R10_V2_spreads2.pdf
https://www.law.georgetown.edu/poverty-inequality-center/wp-content/uploads/sites/14/2017/08/girlhood-interrupted.pdf
https://haas.berkeley.edu/wp-content/uploads/UCB_Playbook_R10_V2_spreads2.pdf
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
https://arxiv.org/pdf/2305.13873.pdf
https://www.biostat.wisc.edu/~page/rocpr.pdf
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training. Deep-learning based classifiers could inform image and video classification tasks for detection 1 
of sexually explicit images. For example, lightweight nudity detection techniques consisting of neural 2 
nets for image classification are publicly available. Developers could also remove harmful or illegal 3 
content from training data by filtering content from websites that are known to host CSAM and NCII. 4 
Another method for reducing CSAM in training data is by training models only on vetted data, such as 5 
licensed stock images and data in the public domain, given that all image data would be vetted for 6 
licensing and/or exists in the U.S. public domain, though this may be costly for training and may not be 7 
sufficient for training larger diffusion models. 8 

5.1.1.1. Challenges and Limitations of Training Data Filtering 9 

Key challenges and limitations of filtering training data include the subjective nature of safety labels, 10 
resulting in ineffective filters and potential opportunity costs with the quality of model outputs. 11 

Creating a safety filter can involve a human labeling process to classify different types of content as 12 
violative and the type and severity of violation. For example, for the LAION-5B dataset, developers 13 
attempted to remove sexually explicit and harmful content from the original training dataset, but the 14 
safety filters used did not classify and capture all of the harmful or illegal content, including known 15 
CSAM. It may be difficult to remove NCII from training data because consent – the defining feature of 16 
NCII—may not be evident or decipherable in the content itself. 17 

Context matters when implementing a safety filter to remove harmful content from training data. When 18 
crafting internal content policies to train safety classifiers, determining the severity of types of sexual 19 
content can be challenging, especially if it is in a legal gray area. For example, an image of a toddler 20 
wearing a bathing suit on a beach is generally quite harmless in training data, but it also means that the 21 
model was trained on an image of a minor’s body, which can then enable the model to generate 22 
harmful, illegal outputs such as synthetic CSAM using that data, given that generative AI models 23 
generate outputs based on training data inputs. Labels can be used to improve and clean training data 24 
but cannot fully translate context within a product. Inaccurate labels and even accurate labels taken out 25 
of context could result in harmful model outputs.  26 

There are also potential opportunity costs to consider when filtering or limiting training data. Filtering 27 
out data more conservatively could improve the safety of a system but could also reduce its 28 
functionality for benign use cases. For example, removing all images of individuals wearing revealing 29 
clothing at beaches in order to exclude any images of women and children in bathing suits could result 30 
in a model that is not capable of generating high quality images of people in beach settings Research 31 
shows large-scale data filtering could have unexpected side effects on model performance and reduce 32 
the quality of image generation across different tasks. 33 

5.1.2. Input Data Filtering  34 

Input data filtering can be applied at the prompt level for text-to-image models and is used in the 35 
machine learning safety pipeline to prevent harmful generations. This form of moderation is conducted 36 
after a training run for a GAI model and occurs at the product level, when users type in prompts to 37 
generate images. Input data filtering can block malicious content that a user is intentionally attempting 38 
to generate through violative or harmful prompts. 39 

Input data filtering includes machine learning safety or moderation classifiers trained on text data. 40 
These classifiers can be trained on a variety of different text prompts in order to classify different 41 
categories of violative content. With respect to this section, text classifiers can be designed to detect 42 

https://dl.acm.org/doi/pdf/10.1145/3469096.3469867
https://dl.acm.org/doi/abs/10.1145/3582197.3582206
https://dl.acm.org/doi/abs/10.1145/3582197.3582206
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
https://www.fairlicensing.com/en/blog/guide_to_licensing_your_photos_online_properly
https://resources.data.gov/open-licenses/
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
https://proceedings.mlr.press/v162/nichol22a/nichol22a.pdf
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sexual prompts of different severity. For example, this can include benign intimate activity such as two 1 
people kissing, all the way to synthetic CSAM and NCII, which is of the highest severity. Several 2 
companies provide moderation classifiers at the prompt level. Similar to the classifiers discussed for 3 
training data filtering, these classifiers are also contingent on human data labels and internal content 4 
policies to determine what types of content are violative and at what severity levels. 5 

A second, more simplistic, type of input filter used by platforms and developers is a keywords filter, also 6 
known as a keywords block list—an internally-managed database of violative keywords that prevents 7 
the generation of images when a violative keyword is entered as an input prompt. This approach 8 
identifies low-hanging fruit or known egregious content, such as commonly known CSAM terminology or 9 
sexual terms. A keywords block list can be less sophisticated than safety classifiers and used more as a 10 
blunt instrument. Nuance is difficult to achieve when the safety architecture operates in a binary; either 11 
a prompt is blocked because it contains a violative keyword, or it is not blocked because it does not 12 
contain violative keywords. 13 

5.1.2.1. Challenges and Limitations of Input Data Filtering 14 

There are a variety of challenges and limitations with input data filtering techniques, mainly related to 15 
accuracy and robustness. Keyword filters on open-source image generation models can be bypassed 16 
easily, and open-source models generally also have less technical restraints on the creation of harmful 17 
content. Because text safety classifiers are contingent on both robust and nuanced human labels across 18 
many types of content, and on gray-area content that even humans can disagree on, they may not 19 
always be accurate in their classifications. Further, it is a socio-technical challenge to determine the 20 
statistical confidence threshold at which certain types of content should be blocked. For example, 21 
should a CSAM classifier block the generation of content at a lower confidence level, such as 60%, to 22 
ensure that the false negative rate is lower? What kinds of benign content would be blocked if it were to 23 
be set at that threshold? Similar to issues with training data filtering, context is important. On the other 24 
hand, the effectiveness of keyword blocking can be limited on terms that have both harmful and benign 25 
meanings, and could result in false positives. Malicious actors could also easily evade keyword blocks 26 
and violate content moderation policies by adding different characters in between words, using trial and 27 
error to find phrases that are not blocked, or utilizing visual synonyms to generate explicit imagery.  28 

5.1.3. Image Output Filtering  29 

Image output filtering is a method used to directly block the generation of an image based on any 30 
violations or harms coming from the image output itself. Different output filtering techniques are used 31 
by AI developers to help prevent harmful generations, although there is no publicly-available 32 
information on how they are trained or the content that they block. Image output filters can also be 33 
known as image classifiers. Image classifiers utilize labeled images that feed into a neural network, 34 
which then conducts image classification and predicts a specific label or class depending on the original 35 
labeled images. For example, an AI developer can create a training dataset with a variety of harmful 36 
sexual images and detailed labels. This dataset can then be used to train a machine learning classifier to 37 
help identify similar content at scale. Once the classifier has been tested and evaluated, it can be 38 
included as a moderation mitigation within a product: When the classifier is triggered at a specific 39 
confidence level indicating harmful content (e.g., 0.9 or above), then the generation can be blocked at 40 
the user level. 41 

https://cdn.openai.com/papers/DALL_E_3_System_Card.pdf
https://www.technologyreview.com/2023/02/24/1069093/ai-image-generator-midjourney-blocks-porn-by-banning-words-about-the-human-reproductive-system/
https://www.theverge.com/2022/9/15/23340673/ai-image-generation-stable-diffusion-explained-ethics-copyright-data
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_157
https://www.technologyreview.com/2023/02/24/1069093/ai-image-generator-midjourney-blocks-porn-by-banning-words-about-the-human-reproductive-system/
https://www.bloomberg.com/news/articles/2024-02-09/fighting-deepfakes-whats-being-done-biden-robocalls-to-taylor-swift-ai-images
https://arxiv.org/pdf/2210.04610v5.pdf
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5.1.3.1. Challenges and Limitations of Image Output Filtering 1 

Image output filtering challenges and limitations are similar to those of other methods that are applied 2 
after training GAI models; they cannot entirely prevent harmful synthetic CSAM and NCII outputs if 3 
training data contains this harmful content. The effectiveness of image output filters depends on their 4 
training data and how well it covers a wide range of sexual content. Similar to other classifiers, these 5 
classifiers could become conservative or far too lenient in blocking content, and it is a challenge to set 6 
filter thresholds and confidence levels for content that exists in a gray area, can be subjective, or simply 7 
may not be covered as violative within an organization’s internal policies. These classifiers can also be 8 
informed by the real-world abuse of tools by malicious actors and in order to be effective, should be 9 
constantly updated to reflect empirical abuse cases. This is another significant implementation 10 
challenge, given that new forms of abuse may be difficult to detect if classifiers were not designed to 11 
detect novel abuse content. Image output filtering may be more effective for content that contains clear 12 
and evident nudity, given that nudity classifiers exist, but could be less helpful for unseen harmful sexual 13 
depictions or content that exists in a gray area. Lastly, possessing a training data set with explicit content 14 
could be a risk in and of itself for industry and academic researchers. 15 

5.1.4. Hashing Confirmed Synthetic CSAM and NCII  16 

Hashing confirmed synthetic CSAM and NCII after it has been created, and then appropriately sharing 17 
these hashes with platforms, civil society, and law enforcement, as appropriate, can help track its 18 
dissemination across the Internet and curtail further spread.  19 

Cryptographic hashes make use of the “avalanche effect,” which states that even a slight alteration to 20 
the input data would produce a vastly different cryptographic hash. When a single letter in a written 21 
document or a single pixel in an image is altered, the new cryptographic hash will not resemble the 22 
original one. For example, if a CSAM image is cryptographically-hashed, and that exact image is posted 23 
on a social media platform that participates in the hash-sharing database containing the original image, 24 
the platform should be able to identify the match.  25 

Cryptographic hashing is currently used for service providers and platforms to prevent the redistribution 26 
of synthetic CSAM and NCII content, in order to identify exact matches of egregious content. However, it 27 
is not impervious to hacking and adversarial attacks. 28 

Perceptual hash algorithms output similar hashes for comparable input files as seen by humans; the 29 
hash value is contingent on the content and stays approximately the same if the content is not 30 
significantly changed, such as if modifications are made to compression, brightness, orientation, or 31 
color. The objective is to use the distance between and similarity of the perceptual hashes to 32 
approximate the degree of similarity between input files. There is still a chance that perceptual hashes 33 
will produce false positives and false negatives, meaning that different input files may have hashes that 34 
are same or comparable, while similar input files may have hashes that are different.  35 

Research shows that perceptual hashing can have greater benefits in multimedia formats given that it 36 
produces hash matches based on similarity and tolerates differences in format and quality. For example, 37 
if a confirmed synthetic CSAM image is edited with a color filter and posted on a platform, it would 38 
retain the hash match to the original content.  39 

If safety experts at AI companies are able to examine these forms of synthetic content and identify 40 
images as CSAM and NCII, (though the classification of images itself may be a legal and policy challenge) 41 
it could be hashed (both with cryptographic and perceptual hashes) and stored in shared databases for 42 

https://dl.acm.org/doi/pdf/10.1145/3469096.3469867
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known CSAM and NCII for other entities to identify. This would enable the detection and mitigation of 1 
the content across different platforms and websites. This solution may not prevent the harms of 2 
synthetic CSAM and NCII but could reduce the impact and severity of these harms by stymying the 3 
dissemination of this content and reducing further exposure of those depicted without their consent.  4 

5.1.4.1. Challenges and Limitations of Hashing Confirmed Synthetic CSAM and NCII 5 

There are coordination, policy, and technical challenges for hashing confirmed CSAM and NCII. 6 

Coordination across organizations to share this content safely and effectively can be difficult. There are 7 
established norms and laws about reporting CSAM, as well as established organizations that conduct this 8 
work, such as the National Center on Missing and Exploited Children (NCMEC), which has also started to 9 
hash reported synthetic CSAM. However, efforts for synthetic CSAM and NCII are still in early stages, and 10 
can be better coordinated and standardized between AI developers, social media platforms, messaging 11 
platforms, and other Internet providers in order to track the dissemination of this content and report it 12 
to law enforcement effectively and proactively.  13 

Policy challenges of understanding context also apply to hashing synthetic CSAM and NCII. The explicit 14 
depiction of minors in images is a felony offense, and synthetic CSAM can represent a visual depiction of 15 
sexually explicit conduct involving a minor, which has been facilitated using GAI technologies. However, 16 
there currently is no unified classification system for synthetic content to shed light on how an authentic 17 
image may be modified by AI, if the image is completely synthetic, whether the image shows a minor, 18 
and what kind of explicit conduct is shown in the image. Another key issue is determining whether an 19 
image that is uploaded and modified by AI was NCII or not. It is difficult to adjudicate consent for widely-20 
used GAI tools, unless the tool itself is malicious and trained on authentic images of people, and consent 21 
is also difficult to discern on social media platforms. Consent may also be limited to particular contexts, 22 
for example, there could be consent for the use of a person’s image to create a new GAI image, but not 23 
for distribution of that image. Further, even if these policy gray areas are standardized across industry 24 
and civil society and clarified through regulations and legal action, vetting and hashing this content 25 
would still have to be done at scale. At this point in time, human vetting is still a requirement for 26 
accurate labeling, which also takes a toll on the mental health of reviewers vetting this content. These 27 
policy considerations are vital to understand since labeling and assigning severity levels for hashed 28 
content is not straightforward. 29 

Lastly, it is important to note the technical limitations of hashing—both perceptual and cryptographic 30 
and their vulnerabilities. Hashing can have robustness issues such as hash collisions, and though they 31 
can be a helpful security measure, they can also be attacked and manipulated. Malicious modifications 32 
of hashes, particularly perceptual hashes, are a concern since malicious modifications are possible 33 
without distinguishing them from legitimate distortion. Bad actors could modify an image in a manner 34 
that is not distinguishable from legitimate or benign distortions (such as compression), thus affecting the 35 
integrity of tracking the original image. Perceptual hashing can allow significant data leakage. The same 36 
properties that make the technique robust can allow inference of information about underlying content 37 
from that content’s hash, introducing serious privacy risks.  38 

Lastly, databases hosting hashes should be secured properly. Insufficiently secured hash-sharing 39 
algorithms can allow for further exploitation, which could harm victims if hash-sharing databases 40 
contain confirmed CSAM or other sensitive content.  41 

https://www.missingkids.org/home
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5.1.5. Provenance Data Tracking Techniques for Synthetic CSAM and NCII 1 

Provenance data tracking techniques for synthetic content, such as digital watermarks and metadata 2 
recording, could be used to reduce synthetic CSAM and NCII harms. They could dissuade malicious 3 
actors from using tools that disclose all synthetic content, including synthetic CSAM and NCII as AI-4 
generated. 5 

Malicious actors who create synthetic CSAM and NCII might find tools less appealing for exploitation if 6 
those tools include provenance information about the origin of an image, or a watermark that shows an 7 
image is AI-generated, which can quickly assist in debunking any claims that synthetic CSAM and NCII 8 
images are authentic. Most malicious actors generating this content on the Internet utilize open-source 9 
tools or can even build their own smaller models based on existing open-source code, given that they 10 
can easily remove safeguards. Implementing provenance data tracking approaches that utilize robust 11 
watermarks and/or embed cryptographically-signed and secure metadata could add barriers for 12 
malicious actors looking to quickly spin up and even monetize synthetic CSAM and NCII. This method 13 
may reduce how much synthetic CSAM and NCII is created using tools that include provenance data 14 
tracking techniques, though there needs to be more research to support this assertion. 15 

Directly designating synthetic CSAM and NCII as AI-generated through provenance labels can allow for 16 
the streamlined identification of this content by practitioners tracking these harms. The benefit of 17 
streamlined identification would likely apply when content is generated and disseminated by less 18 
sophisticated actors, who do not strategically use tools without provenance data tracking techniques, or 19 
actors who are not aware of methods to remove watermarks or metadata. Harmful content created by 20 
GAI tools that use provenance data tracking techniques—such as digital watermarking and metadata 21 
recording—could be identified more easily in an interoperable ecosystem, when various content 22 
providers and platforms are able to detect watermarks and/or preserve metadata.  23 

5.1.5.1. Challenges and Limitations of Provenance Data Tracking Techniques for Synthetic CSAM and 24 
NCII 25 

The challenges and limitations of provenance data tracking techniques for synthetic CSAM and NCII 26 
include uncertainties about efficacy, robustness issues, and potential for adversarial abuse. 27 

There is a lack of research and evidence about whether and how provenance labels are effective in 28 
reducing harms from synthetic CSAM and NCII. Survivors and victims whose images are altered without 29 
their consent through AI experience, harm, humiliation, and degradation regardless of whether the 30 
content has overt labels and metadata attached to it.  31 

Robustness issues with provenance data tracking techniques are also a concern. As mentioned in 32 
previous sections, even the most robust frameworks for metadata recording and digital watermarks can 33 
be vulnerable to manipulation and modification. Covert and overt watermarks can be removed from 34 
digital content, and embedded metadata could be stripped. All of the provenance issues discussed in 35 
this report apply to its use for synthetic CSAM and NCII. Given the level of sensitivity and harm with this 36 
type of content, robustness can affect the identification of this content at scale by practitioners, as well 37 
as victims of these harms. 38 

Lastly, issues of robustness can create avenues for the adversarial abuse of provenance data tracking. 39 
Initial research shows how malicious actors can remove watermarks and metadata from synthetic CSAM 40 
and NCII. If so, they could undermine the benefits of labels on this content. Furthermore, the section on 41 
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embedded metadata shows how adversarial attacks can be conducted on metadata that is both 1 
unsigned and signed; cryptography does not guarantee complete defense against adversarial attacks. 2 

5.1.6. Red-Teaming and Testing for CSAM and NCII 3 

Red-teaming and testing for synthetic CSAM and NCII prior to the deployment of GAI models could 4 
provide further safeguards. As defined in EO 14110 on Safe, Secure, and Trustworthy Development and 5 
Use of Artificial Intelligence, red-teaming refers to a “structured testing effort to find flaws and 6 
vulnerabilities in an AI system, often in a controlled environment and in collaboration with developers of 7 
AI.” Red-teaming is a narrow type of evaluation method. Currently, standardized red-teaming for GAI 8 
models does not exist, as the space is emergent. However, a baseline level of red-teaming—like 9 
inputting various types of adversarial prompts to generate synthetic CSAM and NCII—could be used. By 10 
scoping the Internet and internal systems for known prompts used to generate or attempt to generate 11 
synthetic CSAM and NCII, developers of AI models can develop initial assessments of a model’s 12 
propensity toward generating this content. An established and uniform red-teaming protocol or 13 
guidelines for synthetic CSAM and NCII could assist with the future measurement of this content. 14 

5.1.6.1. Challenges and Limitations of Red-Teaming and Testing for CSAM and NCII 15 

Red-teaming and testing cannot effectively make up for issues in training data. These methods are also 16 
contingent on how testing is conducted, and therefore are biased toward testing for known 17 
vulnerabilities in an AI system. As mentioned throughout this section, training datasets without CSAM 18 
and NCII data can help reduce the generation of this content. Additional safeguards applied after the 19 
initial training run may not prove to be sufficient if the data itself is polluted. Lastly, by probing the 20 
model with prompts that are already established as harmful and/or capable of creating synthetic CSAM 21 
or NCII, a developer may not have coverage of new adversarial prompts that could bypass model 22 
safeguards. 23 

Opportunities for Further Development: More research and development is needed for designing 
effective red-teaming strategies to catch synthetic CSAM and NCII outputs, determining the 
effectiveness of provenance data tracking techniques on this content in reducing harm, designing 
classifiers and filters to remove CSAM and NCII from training data as well as at the input and output 
model levels, and developing coordination between civil society, industry, law enforcement, and 
other relevant entities to hash synthetic CSAM and NCII. Further research is also needed to 
examine the viability of privacy-preserving perceptual hashing. 

 24 

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://datasociety.net/wp-content/uploads/2023/10/Recommendations-for-Using-Red-Teaming-for-AI-Accountability-PolicyBrief.pdf#:~:text=Red-teaming%20works%20well%20to%20evaluate%20specific%20vulnerabilities%20in,mitigate%20the%20real-world%20harms%20of%20AI%20system%20deployment.
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6. Application of Concepts to the NIST AI Risk Management Framework Lifecycle  1 

The NIST AI Risk Management Framework (NIST AI RMF) states, “measuring risk at an earlier stage in the 2 
AI lifecycle may yield different results than measuring risk at a later stage; some risks may be latent at a 3 
given point in time and may increase as AI systems adapt and evolve.” Different AI actors (both actors 4 
who are building and/or utilizing AI models) will often have different risk perspectives and may find 5 
certain provenance data tracking or synthetic content detection techniques more useful contingent on 6 
use case, product, and organizational goals.  7 

 8 

Figure 2. AI actors across AI lifecycle stages. From NIST AI 100-1 AI RMF 1.0 9 

Data & Input: Collect and Process Data: The responsible collection and filtering of training data could 10 
help reduce and/or prevent the harms of synthetic CSAM and NCII outputs in this phase. Provenance 11 
data tracking techniques such as watermarking and metadata could be added to training data to 12 
preserve the provenance of datasets used in training. In this phase, data and input needed to design 13 
detection models to classify synthetic content can also be collected.  14 

AI Model: Build and Use Model, Verify and Validate: During the build and use, and verify and validate 15 
phases, provenance data tracking techniques such as metadata or watermarks can be proactively added 16 
to model outputs at the time of generation. To apply these provenance approaches securely, they can 17 
be cryptographically verified and authenticated in their application, through the use of a digital 18 
signature, or other types of hash functions. Also, the final model can be protected by watermarking the 19 
model weights or parameters. The effectiveness of provenance data tracking techniques, such as 20 
accuracy in detecting watermarks, or correctly identifying manipulated and synthetic content, prior to 21 
deployment needs to be verified. Mitigation mechanisms that prevent the creation of synthetic CSAM 22 
and NCII (as discussed in previous sections) may be proactively applied during the model building phase.  23 

Task and Output: Deploy and Use: Establishing mechanisms for collecting a diverse set of user 24 
feedback—especially in cases of false positives (e.g., disclosing a content as AI-generated while it is 25 

https://www.nist.gov/itl/ai-risk-management-framework
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actually human generated) or negatives (e.g., missing a disclosure of AI-generated content)—supports 1 
content authentication and synthetic content detection efforts. The measurements and metrics used are 2 
highly dependent on the use case, context, systems being tested, and the application. 3 

Application Context: Operate and Monitor: The broader impact of digital content transparency 4 
approaches may be examined during the operate and monitor phase of the AI lifecycle in light of 5 
objectives, legal and regulatory requirements, and ethical considerations.  6 

People and Planet: Use or Impacted By: By sharing the results from TEVV conducted across the AI 7 
lifecycle with various representative actors such as AI developers, civil society entities, and end users, 8 
effective mitigations to potential harms can be explored. A focus on digital rights for all and safety-by-9 
design remains important in this last phase, and closing gaps where groups may be denied access to 10 
their digital human rights to digital content transparency, through factors such as a lack of Internet 11 
access, or information literacy resources to understand labels on content, or as a result of the malign or 12 
unintended use of provenance data tracking techniques to negatively impact user privacy should be 13 
considered for AI actors across the content lifecycle. 14 

 15 

Figure 3. Digital content transparency approaches, across the AI lifecycle described in NIST AI RMF 16 

https://www.un.org/techenvoy/content/digital-human-rights#:~:text=DIGITAL%20HUMAN%20RIGHTS%20%E2%80%93%20ensuring%20the%20protection%20of,are%20too%20often%20also%20used%20to%20violate%20them.
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7. Conclusion 1 

This report is intended to enhance understanding of technical approaches to synthetic content and 2 
digital content transparency as a key step in reducing related risks. It focuses on and provides an 3 
overview of technical approaches to digital content transparency, which is key to achieving the goal of 4 
reducing AI risks involving synthetic image, text, audio, and video content. This report provides specific 5 
information about synthetic content related to child sexual abuse material (CSAM) and non-consensual 6 
intimate images (NCII) and describes techniques being used or considered to prevent and reduce related 7 
harms.  8 

This report describes technical approaches that are being used and offered commercially or are 9 
available today as well as those that are being explored. After explaining the advantages and issues with 10 
each technique, this document highlights selected opportunities for further development.  11 

Each of the approaches described in this report holds the promise of helping to improve trust by clearly 12 
and readily indicating where AI techniques have been used to generate or modify digital content. Yet 13 
each has important limitations that are both technical and social in nature. It is vital to note that none of 14 
these techniques can be considered as comprehensive solutions; the value of any given technique is use-15 
case and context specific. In order for digital content transparency to succeed, the application of 16 
provenance data tracking and synthetic content detection approaches must occur in tandem with 17 
various social efforts and initiatives to affirm content authenticity.  18 

Collaboration and coordination across the content value chain—and consideration of social factors—are 19 
needed to ensure adoption of effective digital content transparency approaches. That includes the need 20 
for science-backed standards forged through global actions; this report cites several of those initiatives 21 
for particular techniques aimed at fostering digital content transparency.  22 

While there is no silver bullet to solve the issue of public trust in and safety concerns posed by digital 23 
content, the consideration of the various approaches for provenance data tracking and synthetic 24 
content detection across different modalities of content is important, and research on these approaches 25 
can be developed further. This report is a resource to promote understanding and help to lay the 26 
groundwork for the development of additional, improved technical approaches to advancing synthetic 27 
content provenance, detection, labeling, and authentication.  28 
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Appendix A. Current Standards  1 

A.1. Synthetic Content Standards and Guidelines 2 

There are various hardware, software, and risk management standards for AI systems that are pertinent 3 
to authentication of synthetic content. The table below provides a non-exhaustive list. 4 

Standard Domain Purpose Organization(s) 

ISO/IEC 38505-
1:2017 

Governance of 
data 

 

Evaluating, directing, and 
monitoring the handling and use of 
data in organizations. 

International 
Organization for 
Standardization 
(ISO) and the 
International 
Electrotechnical 
Commission (IEC) 

ISO/IEC  

23894:2023 

AI risk 
management 

Integrating risk management into 
AI-related activities and functions. 

ISO and IEC 

ISO/IEC  

JTC 1/SC 29 

Audio, picture, 
multimedia, and 
hypermedia 

Coding of digital information such as 
multimedia, environment, and user-
related metadata, media security, 
privacy management, source 
authentication, and integrity 
verification.  

ISO and IEC 

IPTC  

Photo Metadata 
standard 

Photos 

Defining metadata structure, 
properties, and fields so that images 
are optimally described and easily 
accessed later. 

International Press 
Telecommunication
s Council (IPTC) 

 ISO/IEC  

2022:2021 

Information 
security 
management 
systems 

Measuring a software product based 
on internal security, reliability, 
performance efficiency, and 
maintainability.  

ISO and IEC 

ISO/IEC/IEEE  

29119  

Software testing 

 

Testing across the AI lifecycle and 
for black box systems, which are 
directly useful in the context of GAI 
systems.  

ISO, IEC, and the 
Institute of 
Electrical and 
Electronics 
Engineers (IEEE) 

https://www.iso.org/obp/ui/#iso:std:iso-iec:38505:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:38505:-1:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/committee/45316.html
https://www.iso.org/committee/45316.html
https://iptc.org/standards/photo-metadata/#:~:text=The%20IPTC%20Photo%20Metadata%20standard,described%20and%20easily%20accessed%20later.
https://iptc.org/standards/photo-metadata/#:~:text=The%20IPTC%20Photo%20Metadata%20standard,described%20and%20easily%20accessed%20later.
https://iptc.org/standards/photo-metadata/#:~:text=The%20IPTC%20Photo%20Metadata%20standard,described%20and%20easily%20accessed%20later.
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://www.iso.org/standard/81291.html
https://www.iso.org/standard/81291.html
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ISO/IEC  

22989:2022 

AI concepts and 
terminology 

Establishing terminology for AI and 
describing concepts in the field of 
AI. 

ISO and IEC 

ISO/IEC  

42001:2023 

AI—Management 
system 

 

Specifying requirements for 
establishing, implementing, 
maintaining, and continually 
improving an Artificial Intelligence 
Management System (AIMS) within 
organizations. 

ISO and IEC 

ISO/IEC  

TR 24027:2021 

Bias in AI systems 
and AI-aided 
decision making 

 Describing measurement 
techniques and methods for 
assessing bias, with the aim to 
address and treat bias-related 
vulnerabilities. 

ISO and IEC 

ISO/IEC  

TS 4213:2022  

Assessment of 
machine learning 
classification 
performance 

Specifying methodologies for 
measuring classification 
performance of machine learning 
models, systems, and algorithms. 

ISO and IEC 

SMPTE 2112-10 

Open Binding of 
Content 

Identifiers 
standard 

 

Describes a method of binding 
content identifiers to media, 
utilizing audio watermarking, 
allowing the content to be identified 
both electronically and acoustically 

Society of Motion 
Picture and 
Television 
Engineers (SMPTE) 
Technology 
Committee on 

Television and 
Broadband (24TB) 

ATSC A/334 
Audio 
Watermarking 

Specifies the VP1 audio watermark 
for use with systems conforming to 
the ATSC 3.0 family of specifications 
and the format in which the audio 
watermark resides in a PCM audio 
signal 

Advanced 
Television Systems 
Committee (ATSC) 

 

ATSC A/335 
Video 
Watermarking 

Describes a video watermarking 
technology to robustly embed 
ancillary data in the transmitted 
pixels of a video signal 

Advanced 
Television Systems 
Committee (ATSC) 

https://www.iso.org/standard/74296.html
https://www.iso.org/standard/74296.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/77607.html
https://www.iso.org/standard/77607.html
https://www.iso.org/standard/79799.html
https://www.iso.org/standard/79799.html
https://ieeexplore.ieee.org/document/9264808/media#media
https://www.atsc.org/atsc-documents/a3342016-audio-watermark-emission/
https://www.atsc.org/atsc-documents/a3352016-video-watermark-emission/
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A.2. Selected NIST Practices and Guidelines 1 

NIST’s past work in the realms of AI, privacy, and cybersecurity is useful with regard to authentication of 2 
synthetic content. Selected guidelines are noted below.  3 

Framework Description 

NIST AI Risk Management 
Framework 

Foundation for what organizations should do to manage risk for AI 
systems. 

NIST AI RMF Playbook Foundation for how to implement the NIST AI RMF. 

AI RMF Core Outcomes and actions that enable dialogue, understanding, and 
activities to manage AI risks and responsibly develop trustworthy AI 
systems. 

Security and Privacy Controls 
for Information Systems and 
Organizations 

A catalog of security and privacy controls for information systems and 
organizations to protect organizational operations and assets, 
individuals, other organizations, and the Nation from a diverse set of 
threats and risks. 

Digital Identity Guidelines  

and  

2022 Initial Public Draft (IPD) 
for Digital Identity Guidelines 

Technical requirements for federal agencies implementing digital 
identity services. The 2022 Initial Public Draft (IPD) for Digital Identity 
Guidelines enhances fraud prevention measures from previous 
versions. 

Privacy Framework  A tool for improving privacy through enterprise risk management. 

A.3. Metadata Standards 4 

EXIF (Exchangeable Image File Format) Metadata: A standard that specifies the formats for images, 5 
sound, and ancillary tags used by digital cameras (including smartphones), scanners, and other systems. 6 
EXIF data includes details about the camera model used, shutter speed, the creation date, and location 7 
information. 8 

IPTC (International Press Telecommunications Council) Metadata: A standard for exchanging metadata 9 
in images, particularly those used in journalism. It includes fields for information such as captions, 10 
keywords, location, and copyright. 11 

XMP (Extensible Metadata Platform) Metadata: An ISO standard, originally created by Adobe Systems 12 
Inc., for the creation, processing, and interchange of standardized and custom metadata for digital 13 
documents (e.g., images, videos, PDFs). 14 

ANSI/NISO Z39.87-2006 (R2017) Data Dictionary - Technical Metadata for Digital Still Images: Defines a 15 
set of metadata elements for raster digital images to enable users to develop, exchange, and interpret 16 
digital image files. The dictionary has been designed to facilitate interoperability between systems, 17 

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook
https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook
https://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Core_And_Profiles/5-sec-core
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://www.nist.gov/system/files/documents/2020/01/16/NIST%20Privacy%20Framework_V1.0.pdf
https://exifinfo.org/
https://www.iptc.org/std/photometadata/0.0/documentation/IPTC-PhotoMetadataWhitePaper2007_11.pdf
https://www.iptc.org/std/photometadata/0.0/documentation/IPTC-PhotoMetadataWhitePaper2007_11.pdf
https://en.wikipedia.org/wiki/List_of_International_Organization_for_Standardization_standards
https://en.wikipedia.org/wiki/ADBE
https://en.wikipedia.org/wiki/ADBE
https://www.iso.org/standard/75163.html
https://en.wikipedia.org/wiki/Metadata
https://www.niso.org/publications/ansiniso-z3987-2006-r2017-data-dictionary-technical-metadata-digital-still-images


 

70 

 

services, and software, as well as to support the long-term management of and continuing access to 1 
digital image collections. 2 

textMD: An XML Schema that details technical metadata for text-based digital objects. It most 3 
commonly serves as an extension schema used within the Metadata Encoding and Transmission Schema 4 
(METS) administrative metadata section. However, it could also exist as a standalone document. While 5 
textMD is attached to text files, individual document pages may additionally be defined as distinct 6 
objects with their own metadata. 7 

ISO/IEC 11179 Metadata Registry (MDR): A standard for the management of metadata registries, 8 
designed to ensure interoperability across different systems. 9 

Dublin Core Metadata Initiative (DCMI): One of the most-used digital metadata standards. A 10 
straightforward and adaptable set of metadata elements is offered by the DCMI, which can be utilized to 11 
characterize different kinds of digital resources. Titles, creators, subjects, descriptions, dates, formats, 12 
and identifiers are among the essential elements it provides. These components offer a basis for 13 
interoperability amongst various metadata systems and can be used to construct informative metadata. 14 

Metadata Object Description Schema (MODS): An XML-based metadata system created by the Library 15 
of Congress. It offers specific elements for various content types, including music, photos, videos, 16 
documents, and maps, enabling a more detailed description of resources. Furthermore, it facilitates the 17 
encoding of intricate relationships among resources, making it possible to depict collections, series, or 18 
hierarchical organizations.  19 

The Metadata Encoding and Transmission Standard (METS): A standard expressed in XML for encoding 20 
descriptive, administrative, and structural metadata regarding objects within a digital library that 21 
provides the means to convey the metadata necessary for both the management of digital objects 22 
within a repository and the exchange of such objects between repositories (or between repositories and 23 
their users). 24 

https://www.loc.gov/standards/textMD/
https://www.loc.gov/standards/mets/
https://www.loc.gov/standards/mets/METSOverview.v2.html#admMD
https://www.iso.org/standard/78914.html
https://www.iso.org/standard/78914.html
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.loc.gov/standards/mods/
https://www.loc.gov/standards/mets/mets-home.html
https://www.loc.gov/standards/mets/mets-home.html
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Appendix B. Technical Tools 1 

Selected technical tools related to digital content transparency.  2 

Tool Name Domain Modality Description 

Google Deepmind SynthID Watermarking and 
identification 

Image 

Audio 

Tool for watermarking and 
identifying AI-generated 
content 

C2PA Tool Content 
authentication 

Image 

Video 

Audio 

Documents 

Open-source tools for 
content authenticity and 
provenance 

HIVE Classification APIs Detection Images 

Text 

Identify AI-generated or 
modified images and text 

AISEO Detection Text Identify human text and AI-
generated text 

Photoguard Deepfakes Image Prevents unauthorized 
image manipulation 

Sensity Deepfakes Image 

Video 

Detect Deepfake images 
and videos 

GPTzero Detection Text Detect AI-generated text 

Turnitin Detection Text Detect AI-generated text; 
specialized for student 
writing 

RADAR Detection Text A framework for AI-
generated text 

Resemble AI Detection Audio Detect AI-generated audio 
and deepfakes 

https://deepmind.google/technologies/synthid/
https://opensource.contentauthenticity.org/
https://thehive.ai/apis/ai-generated-content-classification
https://aiseo.ai/AI-tools/ai-content-detection.html
https://github.com/MadryLab/photoguard
https://sensity.ai/deepfake-detection/
https://gptzero.me/
https://www.turnitin.com/
https://radar.vizhub.ai/
https://www.resemble.ai/
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Tool Name Domain Modality Description 

Truepic Lens Content 
Authentication 

Image 

Video 

Mobile camera SDK 
powered with C2PA 
standard 

Serelay Content 
Authentication 

Image 

Video 

Verify authenticity of 
captured images/videos 

Attestiv Blockchain-based 
authentication  

Image 

Video 

Documents 

Media validation and fraud 
detection 

Copyleaks Detection Text 

Source Code 

Detect AI-generated 
content including source 
code plagiarism 

Azure AI Content Safety Content Moderation Text 

Image 

Detects harmful user-
generated and AI-generated 
content in applications and 
services 

Reality Defender Deepfakes Text 

Image 

Video 

Audio 

Detect deepfakes and 
generative content 

Verify Authentication Image 

Video 

Audio 

Inspect and verifies the 
content credentials of a 
digital content 

FakeNet AI Deepfakes Video Detects synthetic media 

PhotoDNA CSAM Image 

Video 

Detects CSAM content 

CSAI Match CSAM Video Detects CSAM videos 

https://truepic.com/truepic-lens/
https://www.serelay.com/our-products/console-api-sdk/
https://attestiv.com/
https://copyleaks.com/
https://ai.azure.com/explore/contentsafety
https://realitydefender.com/
https://contentcredentials.org/verify
https://www.fakenetai.com/
https://www.microsoft.com/en-us/photodna
https://www.youtube.com/csai-match
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Tool Name Domain Modality Description 

NeuralHash CSAM Image Detects CSAM on client 
devices 

PDQ 

TMK+PDQF 

CSAM Image 

Video 

Detects CSAM content 

eGLYPH Harmful Content Audio 

Image 

Video 

Alerting system to social 
media platforms 

GIFCT Harmful Content Image 

Video 

Shared hashing database to 
identify terrorism materials 

TinEye Retrieval Image Search and retrieves 
perceptual similar images 
including image source  

Google reverse image 
search 

Retrieval Image Search and retrieves 
perceptual similar images 
including image source  

Steg.AI Watermarking Image 

Video 

Documents 

Secures and authenticate 
digital assets using forensic 
watermarks 

SAFE Watermarking Digital assets digital watermark 
embedding and detection 
tool for digital assets 

ZIRCON Watermarking Internet of 
Things (IOT) 

a novel zero-watermarking 
approach to establish end-
to-end data trustworthiness 
in an IoT network 

Imatag Watermarking Image 

Video 

Digital watermarking to 
embed secure and robust 
invisible watermarks during 

https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://raw.githubusercontent.com/facebook/ThreatExchange/main/hashing/hashing.pdf
https://raw.githubusercontent.com/facebook/ThreatExchange/main/hashing/hashing.pdf
https://www.counterextremism.com/video/how-ceps-eglyph-technology-works
https://gifct.org/
http://tineye.com/
http://images.google.com/
http://images.google.com/
https://steg.ai/
https://www.digimarc.com/press-releases/2024/01/04/digimarc-offers-free-digital-watermark-embedding-and-detection-tools#:~:text=SAFE%E2%84%A2%20digital%20watermarks%20can%20communicate%20content%20provenance%2C%20authenticity%2C,internet%2C%20digital%20watermarks%20must%20have%20five%20specific%20characteristics.
https://arxiv.org/abs/2305.00266
https://www.imatag.com/
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Tool Name Domain Modality Description 

the image generation 
process 

WinstonAI Detection Text AI content detection tool 
for text generated by LLMs 

ZeroGPT Detection Text AI content detection tool 
for text generated by LLMs 

https://gowinston.ai/
https://www.zerogpt.com/
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Appendix C. Provenance Data Tracking 1 

C.1. Example Digital Watermark Use Cases 2 

Steganography: Watermarking can be used to conceal or hide a message (text, file, image, or video) into 3 
another piece of digital content by altering textual information, altering the pixel values in an image, or 4 
inserting discrete sounds in an audio file that are covert to human (visual or auditory) detection.  5 

Invisible forensic watermarking: Dataset watermarking, model watermarking, and steganography can 6 
be combined to secure digital assets such as tracing back content to specific models.  7 

Copyright protection: Watermarking has been used to protect digital media content, such as images, 8 
audio, and video, from unauthorized use or distribution by embedding ownership or copyright 9 
information. This may discourage piracy and unauthorized distribution, either because the content can 10 
be detected as belonging to someone else or because an overt watermark renders the content 11 
unusable. Watermarks have also been applied by global news organizations to track and monitor the 12 
distribution of digital media content across channels or platforms, with the goal of fighting copyright 13 
infringement. 14 

Content authentication: Watermarking can affirm the authenticity of the origin and integrity of digital 15 
content, while minimizing the chances that the content has not been tampered with or altered.  16 

C.2. Watermarking Applications Prior to Content Creation 17 

The application of watermarks can span from datasets and trained models till digital content generation. 18 
For example, here are some types and categories being applied:  19 

Dataset watermarking  is a technique that embeds a unique identifier that traces the 
provenance of a dataset and acts as proof of ownership of digital 
content. 

Model watermarking is a technique that embeds a unique identifier in a model and acts as 
proof of ownership of digital content while preventing unauthorized 
uses and distribution. 

Differential watermarking is a technique that embeds a unique identifier between two data points 
(pixel values or features of a data table/tabular dataset). 

C.3. Current Provenance-Related Initiatives 20 

Framework Description Techniques Discussed Type 

Coalition for 
Content 
Provenance and 
Authenticity 
(C2PA)  

The C2PA framework is 
an interoperable 
specification that 
“enables the authors of 
provenance data to 

Metadata embedding 

Digital signatures 

Watermark (with Content 
Credential feature) 

Framework 

https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
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 securely bind statements 
of provenance data to 
instances of content 
using their unique 
credentials” 

The Starling 
Framework for 
Data Integrity 

A set of tools and 
principles utilizing Web3 
technology in order to 
store, capture, and verify 
content. The framework 
has also utilized the C2Pa 
specification. 

- Blockchain/Web3 

- Digital fingerprinting  

- Embedded metadata 

Framework 

The Numbers 
Protocol 

“Numbers Protocol is the 
Decentralized 
Provenance Standard. It 
secures digital media 
provenance through a 
decentralized ecosystem 
and blockchain 
technology.” It utilizes 
existing standards such 
as the IPTC and C2PA 
framework as well. 

- Blockchain/Web3 

- Digital fingerprinting  

- Embedded metadata 

Framework 

Interoperable 
Digital Media 
Indexing 

A method to record, 
discover and retrieve 
digital media on 
Ethereum Virtual 
Machine-compatible 
blockchains. 

- Blockchain  

- Digital fingerprinting  

 

Method  

Partnership on 
AI’s Responsible 
Practices for 
Synthetic Media  

Responsible practices 
and recommendations 
regarding synthetic 
media for three 
stakeholders: builders, 
creators, and distributors 
/ publishers. Core 
concepts are consent, 
disclosure, and 
transparency. 

- Watermarking  

- Embedded metadata  

 

Best Practices  

https://www.starlinglab.org/image-authentication/
https://www.starlinglab.org/image-authentication/
https://www.starlinglab.org/image-authentication/
https://docs.numbersprotocol.io/introduction/numbers-protocol
https://docs.numbersprotocol.io/introduction/numbers-protocol
https://eips.ethereum.org/EIPS/eip-7053
https://eips.ethereum.org/EIPS/eip-7053
https://eips.ethereum.org/EIPS/eip-7053
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
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Swear 
Framework 

The patented framework 
fingerprints and maps 

digital media within a 
Web3.0 blockchain 
network. Every pixel and 
soundbite are protected 
and authenticated. 

- Blockchain  

- Digital fingerprinting 

- Metadata 

- Watermarking 

Framework 

https://swear.com/a/
https://swear.com/a/
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Appendix D. Synthetic Content Detection 1 

D.1. Synthetic Image Detection Datasets 2 

The datasets below are popular detection datasets for synthetic images with the real-fake size which 3 
categorizes image content as general, face, and art. 4 

Dataset 
Image 
Content 

(Generator 
Category) Public  

Availability 
Real Images Fake Images 

GAN Diffusion 

UADFV Face ✓ x x 241 252 

FakeSpotter  Face ✓ x x 6,000 5,000 

DFFD  Face ✓ x ✓ 58,703 240,336 

APFDD  Face ✓ x x 5,000 5,000 

ForgeryNet  Face ✓ x ✓ 1,438,201 1,457,861 

DeepArt Art x ✓ ✓ 64,479 73,411 

CNNSpot  General ✓ x ✓ 362,000 362,000 

IEEE VIP Cup  General ✓ ✓ x 7,000 7,000 

DE-FAKE  General x ✓ x 20,000 60,000 

CiFAKE  General x ✓ ✓ 60,000 60,000 

GenImage General ✓ ✓ ✓ 1,331,167 1,350,000 

Zhu et al., “GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image” Table 1, 5 
https://arxiv.org/pdf/2306.08571 6 

D.2. Synthetic Video Detection Datasets 7 

There are various deepfake detection datasets used in numerous studies for training and testing 8 
purposes. Deepfake detection datasets have enabled rapid advances in the field. However, there is a 9 
limit to those datasets: Authentic videos in these datasets are filmed with volunteer actors in limited 10 
scenes, while synthetic videos are created by researchers using a few deepfake tools available. 11 

https://arxiv.org/abs/2306.08571
https://arxiv.org/pdf/2306.08571
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9721302
https://arxiv.org/abs/2103.00484
https://www.mdpi.com/2313-433X/9/1/18
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D.3. Synthetic Video (Deepfakes) Detection Methods and Results 1 

The tables below summarize recent deepfake detection methods and their DL- and ML-based results. 2 

https://arxiv.org/pdf/2103.00484.pdf
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 1 

Rana et al. “Deepfake Detection: A Systematic Literature Review” Table 6, 2 
https://doi.org/10.1109/ACCESS.2022.3154404 3 

https://doi.org/10.1109/ACCESS.2022.3154404
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 1 

 2 

Rana et al. “Deepfake Detection: A systematic Literature Review” Table 6 continued, 3 
https://doi.org/10.1109/ACCESS.2022.3154404 4 

 5 

Rana et al. “Deepfake Detection: A Systematic Literature Review” Table 9, 6 
https://doi.org/10.1109/ACCESS.2022.3154404 7 

 8 

 9 

https://doi.org/10.1109/ACCESS.2022.3154404
https://doi.org/10.1109/ACCESS.2022.3154404
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 1 

Sohan, M. et al. “A survey on deepfake video detection datasets” Table 3, 2 
https://www.researchgate.net/publication/374142887_A_survey_on_deepfake_video_detection_datas3 
ets 4 

D.4. Synthetic Text Detection Methods Summary 5 

 6 

Wu, J. et al. “A Survey on LLM-generated Text Detection: Necessity, Methods, and Future Directions” 7 
Figure 4, http://arxiv.org/abs/2310.14724 8 

https://www.researchgate.net/publication/374142887_A_survey_on_deepfake_video_detection_datasets
https://www.researchgate.net/publication/374142887_A_survey_on_deepfake_video_detection_datasets
http://arxiv.org/abs/2310.14724
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 1 

D.5. Benchmark Datasets for LLMs-generated Text Detection  2 

Synthetic text datasets support the detection of synthetic text content due to their ground truth labels. 3 
For example, one dataset focuses on detecting AI-generated text using LLMs trained on a vast amount of 4 
text and code, while the other dataset is designed for long-form text and essays, containing samples of 5 
both human and AI-generated text from various language models. Studies (Wu J. et al, Tables 5 and 6) 6 
and Yang et al, Table 1) summarizes popular benchmark datasets for LLM-generated text detection. 7 
Various benchmark text corpora include synthetic and human text datasets from different domains, 8 
such as finance, medicine, news articles, web, and academic-related writings to support detection. 9 

D.6. Synthetic Audio Detection Methods Summary 10 

11 
Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future 12 
Directions,” Table 1. 13 

 14 

https://www.kaggle.com/competitions/llm-detect-ai-generated-text
https://www.kaggle.com/competitions/llm-detect-ai-generated-text
https://huggingface.co/datasets/artem9k/ai-text-detection-pile
http://arxiv.org/abs/2310.14724
https://arxiv.org/pdf/2310.15654.pdf
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 1 
Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future 2 
Directions,” Table 1 continued. 3 

 4 

 5 
Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future 6 
Directions,” Table 1 continued. 7 

D.7. Synthetic Audio Detection Datasets and Results Summary 8 

The latest datasets have been created for the purpose of synthetic audio detection methods. 9 
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The table below summarizes recent datasets. These datasets include various language speakers and use 1 
a neural voice cloning tool. The dataset that has been created can be used in the detection model to 2 
identify both imitation-based and synthetic-based audios with minimal preprocessing and training time. 3 
However, it is still necessary to create a new dataset to further enhance the detection of synthetic 4 
audio. 5 

 6 
Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future 7 
Directions,” Table 2. 8 

 9 
Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future 10 
Directions,” Table 3. 11 
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 1 
Almutairi Z. et al. “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future 2 
Directions,” Table 3 continued. 3 
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Appendix E. Testing and Evaluation 1 

E.1. Background: Testing, and Evaluating Synthetic Content Generators 2 

Many of the experimental methods and practices that test the quality of synthetic content are also used 3 
to test, and evaluate digital transparency techniques. We summarize these techniques here. The tests 4 
covered here are accuracy tests that are numerically scored using a numerical accuracy metric scored by 5 
a computer.  6 

E.2. Background: A Common Testing Experiment Framework 7 

Many of the experiments testing synthetic content authentication techniques have a common design. 8 
often used to test a supervised machine learning classifier, which we now describe in more detail. First, 9 
these experiments use a test or evaluation dataset of media (e.g., images, text segments, audio 10 
segments, video segments, code). Then, the experiment provides input to the AI system. These inputs 11 
are either a single content piece or a pair of content pieces. When the input is a single content piece, the 12 
system will be asked to say how likely it is that that content is of the “positive” class. The answer is often 13 
expressed as a real number between 0 and 1. A value of 0 means the content is considered to be 14 
“negative,” while a value of 1 means the content piece is considered to be certainly a positive. The 15 
higher the real number, the more likely the system believes that the content piece is of the “positive” 16 
class. The meaning of the positive class varies: For detection, a 1 indicates that the input is fake (i.e., AI-17 
generated). For pairs of content, the system will be given two images and asked to show how often the 18 
content pair is of a positive class, again with a real number from 0 to 1. 19 

In both of these contexts, each trial has a ground truth of 0 or 1 and a system real number between 0 20 
and 1. This output can be scored as machine learning classification tasks are often scored, using a 21 
performance accuracy metric. A variety of classification accuracy metrics, including fraction correct, 22 
precision, and recall, are defined. Two particular visualizations used are the Receiver Operator Curve 23 
(ROC) and the Detection Error Tradeoff (DET) curve, and the metrics used to score from these 24 
visualizations are the Area under the ROC (AUC) and the minimum of a Decision Cost Function (DCF) (a 25 
DCF is a weighted sum of misses and false alarms). These visualizations and metrics not only measure 26 
the system’s accuracy as it makes decisions but also how its accuracy (in terms of misses and false 27 
alarms) change when the system changes its threshold to become more lenient or stricter. This 28 
framework is used quite often for the testing and measuring of content authentication techniques.  29 

E.3. Background: Frameworks for Model and Data Transparency 30 

One form of testing software is for humans to manually spot-check or check properties of the synthetic 31 
content systems. Having transparency into the system and its models, the training data, and the data 32 
used to test the system can provide helpful information to users as they spot-check and test the 33 
different synthetic content systems. There are a variety of frameworks that provide ways to disclose key 34 
details about the model, as well as any data used in training or testing. Various frameworks include 35 
model cards, data sheets, a model card guidebook, and AI fact sheets. 36 

E.4. Adversarial Attacks and Defenses on Synthetic Content 37 

A common framework used to measure the quality of synthetic content is to construct attacks and 38 
defenses on the system. There are a variety of adversarial attacks that exist, but the ones typically used 39 
to evaluate systems involve adding carefully-crafted data inputs either to the training set or the test set 40 

https://www.cambridge.org/core/books/evaluating-learning-algorithms/3CB22D16AB609D1770C24CA2CB5A11BF
https://www.sciencedirect.com/science/article/abs/pii/S0031320396001422
https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf
https://doi.org/10.1145/3287560.3287596
http://arxiv.org/abs/1803.09010
https://huggingface.co/docs/hub/main/model-card-guidebook
http://sites.computer.org/debull/A21dec/p47.pdf
https://csrc.nist.gov/pubs/ai/100/2/e2023/ipd
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so that the system will mishandle or misclassify images in the test set. As attacks and defenses are used 1 
relevant to the context of the system and how it is being used, one way the context is represented is by 2 
defining or restricting attacks relative to a threat model. One example of a threat model is: all attacked 3 
images are images altered from the test set where the alteration does not change the true class and the 4 
maximum distance (such as a norm) from that original image is at most a small, fix value. This style of 5 
experiment is a common way to evaluate attacks and defenses, as seen in studies from December 2013, 6 
February 2016, and May 2016.  7 

When constructing attacks and defenses, specific strategies are used. The first such strategy (and a 8 
baseline strategy) is to construct an attack on the data, and then train a defense specific to treating that 9 
attack, and using that as the (attack, defense) pair. As this strategy does not show how the defense 10 
generalizes relative to other attacks, a second strategy has been developed. This strategy is a 11 
transferability analysis. A transferability analysis measures if attacks and defenses trained on one model 12 
and on one dataset can be successful on other datasets and situations. There is both intra-algorithm 13 
transferability (where the attack and defense are trained on one dataset but the system now must 14 
handle the same attack on a different dataset); as well as inter-algorithm transferability (using 15 
adversarial attacks from one trained model to fool a completely different algorithm, sometimes trained 16 
on the training dataset). The third strategy takes testing defenses on new attacks further and is a 17 
binarization test. This strategy uses a custom-designed machine learning classification to generate 18 
additional attacks to test the robustness of given defenses. 19 

E.5. Theoretical Proofs To Support Synthetic Content Techniques 20 

Mathematical proofs can guarantee success or establish properties supporting the correctness, 21 
efficiency, or effectiveness of synthetic content techniques. By proving specific components of a 22 
synthetic content generator correct, it can give evidence of the generator’s effectiveness in certain 23 
situations. For defenses against adversaries fooling classifiers with tampered images, one such proof is a 24 
robustness certificate. In more detail, a robustness certificate gives a guarantee that that no attempt to 25 
alter image by at most a pre-specified small amount (according to a distance metric) can fool the system 26 
into misclassifying the altered image.  27 

E.6. Similarity and Distance Metrics 28 

Having a way to compare the quality of generated images to regular images is important. As human 29 
labels are expensive, having an automated way to compute image similarity (or image distance) can be 30 
efficient. In particular, there is a belief that AI-generated images are considered better or higher quality 31 
if they are more similar to human-generated images in the data. Similarity metrics are often from 0 to 1, 32 
where identical images have value 1 and completely different inputs have value 0. Distance metrics are 33 
such that an input has distance 0 to itself; the more different the two inputs are, the higher the distance. 34 
There are a variety of these metrics, automated similarity, and distance metrics used for specific use 35 
cases are in the Table below. Although this table aims to provide examples used in sources, this table 36 
should be viewed neither as representative nor as all-inclusive. Similarity metrics specifically for text also 37 
exist; these metrics are sometimes evaluated by comparing these scores to human judgements in 38 
separate experiments. 39 

https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/2206.13991
https://arxiv.org/abs/2006.00731
https://arxiv.org/abs/1910.09399
https://arxiv.org/abs/2102.01454
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Use Case Example Metrics Used 

Measuring Quality of Automatically-
Generated Images 

the Inception Score (IS), Fréchet Inception Distance (FID, 
and based of the Fréchet distance), the Structural 
Similarity Index (SSIM) 

Distance Metrics used to Show 
robustness of defenses 

Lp distance norms (including Euclidean distance) 

Measuring the Quality of AI-
Generated Text 

Self-BLEU Score, Mauve Score 

Measuring the Quality of 
Watermark Extraction 

Pixel correlation to original watermark 

Measuring the Quality of Digital 
Fingerprinting (Hash Distance 
Metrics) 

Hamming Distance, Euclidean Distance (L2 norm), 
Correlation Coefficient 

 1 

https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1706.08500
https://econpapers.repec.org/article/eeejmvana/v_3a12_3ay_3a1982_3ai_3a3_3ap_3a450-455.htm
https://ieeexplore.ieee.org/document/4775883
https://ieeexplore.ieee.org/document/4775883
https://arxiv.org/abs/1608.04644
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Appendix F. Glossary  1 

AI Content Detection: Determining whether content is AI-generated or not. 2 

AI System: An engineered or machine-based system that can, for a given set of objectives, generate 3 
outputs such as predictions, recommendations, or decisions influencing real or virtual environments. AI 4 
systems are designed to operate with varying levels of autonomy (NIST AI RMF) 5 

Audit: “Independent review and examination of records and activities to assess the adequacy of system 6 
controls, to ensure compliance with established policies and operational procedures.” (NIST SP 1800-7 
15B under Audit from NIST SP 800-12 Rev. 1)  8 

Authentication: Verifying the identity of a user, process, or device, often as a prerequisite to allowing 9 
access to resources in an information system. (FIPS 200 under AUTHENTICATION)  10 

Authenticity: With respect to digital content transparency, it refers to the quality of being genuine, with 11 
trustworthiness about its source or origin. 12 

Best practices: “A procedure that has been shown by research and experience to produce optimal 13 
results and that is established or proposed as a standard suitable for widespread adoption.” (NIST SP 14 
1800-15B from Merriam-Webster NIST SP 1800-15C from Merriam-Webster) 15 

Content authentication: utilizes provenance data tracking methods to determine the authenticity of 16 
content ( i.e., to indicate non-synthetic origins). 17 

CSAM: Child sexual abuse material. 18 

Digital content transparency: refers to the ability to obtain access and exposure to information 19 
regarding the origin and history of digital content. Transparency does not directly imply trust, but rather 20 
provides a vehicle for individuals, organizations, and other entities to have greater information access. 21 

Digital signature: The result of a cryptographic transformation of data that, when properly 22 
implemented, provides a mechanism for verifying origin authentication, data integrity, and signatory 23 
non-repudiation. (FIPS 186-5)  24 

Digital watermarking: involves embedding information into content (image, text, audio, video) in order 25 
to make it difficult to remove. The goal of such watermarking is to assist in verifying the authenticity of 26 
the content or characteristics of its provenance, modifications, or conveyance. (White House EO, 2023) 27 

Evaluation: systematic determination of the extent to which an entity meets its specified criteria; (2) 28 
action that assesses the value of something (https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary 29 
citing ISO/IEC 24765) 30 

Hash function: A hash function is any function that can be used to map data of arbitrary size to fixed-31 
size values  32 

Information integrity: Describes the spectrum of information and associated patterns of creation, 33 
exchange, and consumption in society, where high-integrity information is trustworthy; distinguishes 34 
fact from fiction, opinion, and inference; acknowledges uncertainties; and is transparent about its level 35 
of vetting. (White House, 2022) 36 

Interoperability: “The ability of the user of one member of a group of disparate systems (all having the 37 
same functionality) to work with any of the systems of the group with equal ease and via the same 38 
interface.” (Britannica) 39 

https://doi.org/10.6028/NIST.SP.1800-15
https://doi.org/10.6028/NIST.SP.1800-15
https://doi.org/10.6028/NIST.SP.800-12r1
https://doi.org/10.6028/NIST.FIPS.200
https://doi.org/10.6028/NIST.SP.1800-15
https://doi.org/10.6028/NIST.SP.1800-15
https://www.merriam-webster.com/
https://doi.org/10.6028/NIST.SP.1800-15
https://www.merriam-webster.com/
https://doi.org/10.6028/NIST.FIPS.186-5
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary
https://www.whitehouse.gov/wp-content/uploads/2022/12/Roadmap-Information-Integrity-RD-2022.pdf?_hsenc=p2ANqtz-_x-sgb3MM0fsqqLg3Vz4Vten0hlnHejas4CchT-Z59EnsVTC5XWcZHb2T4TR9Tz2TDQTP8lpdwR8PiDSI4GNApCIykTA
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Least Significant Bit: The least significant bit is the lowest bit in binary numbers. 1 

Metadata: “Information describing the characteristics of data including, for example, structural 2 
metadata describing data structures (e.g., data format, syntax, and semantics) and descriptive metadata 3 
describing data contents (e.g., information security labels).” (NIST SP 800-150 under Metadata, CNSSI 4 
4009-2015)  5 

NCII: Non-consensual intimate imagery 6 

Open information ecosystem: Supports a free exchange of ideas, enables ideas to flow from multiple 7 
sources, empowers people to express conflicting perspectives in a constructive manner, and leverages a 8 
free market of technologies to distribute information to audiences. (White House, 2022) 9 

Provenance data tracking: records the origin and history for digital content, allowing its authenticity to 10 
be determined. It consists of techniques to record metadata as well as overt and covert digital 11 
watermarks on digital content. Provenance data tracking can help to establish the authenticity, integrity, 12 
and credibility of digital content. (NIST SP 800-161r1 NIST SP 800-218 from NIST SP 800-53 Rev. 5 NIST 13 
SP 800-37 Rev. 2) 14 

Software Testing: The evaluation of software that utilizes Verification and validation (also abbreviated 15 
as V&V) to check that a product, service, or system meets requirements and specifications and that it 16 
fulfills its intended purpose. (Global Harmonization Task Force - Quality Management Systems - Process 17 
Validation Guidance (GHTF/SG3/N99-10:2004 (Edition 2) page 3) 18 

Standard: a “document, established by consensus and approved by a recognized body, that provides – 19 
for common and repeated use – rules, guidelines or characteristics for activities or for their results, 20 
aimed at the achievement of the optimum degree of order in a given context.” (ISO) 21 

Steganography: Steganography is a technique which hides a watermark or content information file 22 
inside a primary media file. One of the more common types of steganography involve embedding this 23 
hidden or secret information in the Least Significant Bit of a media file, which is done by slightly 24 
modifying or adding additional information to bytes (or bits on those bytes) of data within pixels in a 25 
media file. (Authenticating AI-Generated Content, 2024, NIST SP 800-101 Rev. 1 under Steganography, 26 
NIST SP 800-72 under Steganography) 27 

Synthetic content: “information, such as images, videos, audio clips, and text, that has been significantly 28 
altered or generated by algorithms, including by AI” (White House AI EO)  29 

Test: (1) activity in which a system or component is executed under specified conditions, the results are 30 
observed or recorded, and an evaluation is made of some aspect of the system or component; (2) to 31 
conduct an activity as in (1); (3) set of one or more test cases and procedures. 32 
https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary citing 33 
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24765:ed-2:v1:en  34 

https://doi.org/10.6028/NIST.SP.800-150
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://www.whitehouse.gov/wp-content/uploads/2022/12/Roadmap-Information-Integrity-RD-2022.pdf?_hsenc=p2ANqtz-_x-sgb3MM0fsqqLg3Vz4Vten0hlnHejas4CchT-Z59EnsVTC5XWcZHb2T4TR9Tz2TDQTP8lpdwR8PiDSI4GNApCIykTA
https://doi.org/10.6028/NIST.SP.800-161r1
https://doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-37r2
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://doi.org/10.6028/NIST.SP.800-101r1
https://doi.org/10.6028/NIST.SP.800-72
https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24765:ed-2:v1:en

